Deutsches Institut für Bautechnik

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Kolonnenstraße 30 B D-10829 Berlin Tel.: +493078730-0 Fax: +493078730-320 E-Mail: dibt@dibt.de www.dibt.de

Mitglied der EOTA Member of EOTA

European Technical Approval ETA-10/0200

English translation prepared by DIBt - Original version in German language

Handelsbezeichnung Trade name

Zulassungsinhaber

Holder of approval

Zulassungsgegenstand und Verwendungszweck Generic type and use

of construction product

Geltungsdauer:

vom Validity: from bis

Herstellwerk Manufacturing plant Befestigungsschrauben JA, JB, JT, JZ und JF Fastening screws JA, JB, JT, JZ and JF

EJOT Baubefestigungen GmbH

In der Stockwiese 35 57334 Bad Laasphe **DEUTSCHLAND**

Befestigungsschrauben für Bauteile und Bleche aus Metall

Fastening screws for metal members and sheeting

27 June 2013

27 June 2018

EJOT Baubefestigungen GmbH

In der Stockwiese 35 57334 Bad Laasphe DEUTSCHLAND

Diese Zulassung umfasst This Approval contains

117 Seiten einschließlich 104 Anhänge 117 pages including 104 annexes

Diese Zulassung ersetzt This Approval replaces

ETA-10/0200 mit Geltungsdauer vom 03.04.2012 bis 17.08.2015 ETA-10/0200 with validity from 03.04.2012 to 17.08.2015

Europäische Organisation für Technische Zulassungen European Organisation for Technical Approvals

Page 2 of 117 | 27 June 2013

I LEGAL BASES AND GENERAL CONDITIONS

- 1 This European technical approval is issued by Deutsches Institut für Bautechnik in accordance with:
 - Council Directive 89/106/EEC of 21 December 1988 on the approximation of laws, regulations and administrative provisions of Member States relating to construction products¹, modified by Council Directive 93/68/EEC² and Regulation (EC) N° 1882/2003 of the European Parliament and of the Council³;
 - Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, as amended by Article 2 of the law of 8 November 2011⁵;
 - Common Procedural Rules for Requesting, Preparing and the Granting of European technical approvals set out in the Annex to Commission Decision 94/23/EC⁶.
- Deutsches Institut für Bautechnik is authorized to check whether the provisions of this European technical approval are met. Checking may take place in the manufacturing plant. Nevertheless, the responsibility for the conformity of the products to the European technical approval and for their fitness for the intended use remains with the holder of the European technical approval.
- This European technical approval is not to be transferred to manufacturers or agents of manufacturers other than those indicated on page 1, or manufacturing plants other than those indicated on page 1 of this European technical approval.
- This European technical approval may be withdrawn by Deutsches Institut für Bautechnik, in particular pursuant to information by the Commission according to Article 5(1) of Council Directive 89/106/EEC.
- Reproduction of this European technical approval including transmission by electronic means shall be in full. However, partial reproduction can be made with the written consent of Deutsches Institut für Bautechnik. In this case partial reproduction has to be designated as such. Texts and drawings of advertising brochures shall not contradict or misuse the European technical approval.
- The European technical approval is issued by the approval body in its official language. This version corresponds fully to the version circulated within EOTA. Translations into other languages have to be designated as such.

Official Journal of the European Communities L 40, 11 February 1989, p. 12

Official Journal of the European Communities L 220, 30 August 1993, p. 1

Official Journal of the European Union L 284, 31 October 2003, p. 25

⁴ Bundesgesetzblatt Teil I 1998, p. 812

⁵ Bundesgesetzblatt Teil I 2011, p. 2178

Official Journal of the European Communities L 17, 20 January 1994, p. 34

Page 3 of 117 | 27 June 2013

II SPECIFIC CONDITIONS OF THE EUROPEAN TECHNICAL APPROVAL

1 Definition of product/ products and intended use

1.1 Definition of the construction product

The EJOT fastening screws are self drilling and self tapping screws listed in Table 1. The fastening screws are made of case hardened carbon steel or stainless steel. They are partly completed with metallic washers and EPDM sealing rings. For details see the appropriate Annexes.

Screws or washers for which the stainless steel grade A2 according to EN ISO 3506-1 is given in the respective Annexes (e. g. 1.4301 or 1.4567) may be made of stainless steel grade A4 (e. g. 1.4401 or 1.4578) as well.

Examples of fastening screws and the corresponding connections are shown in Annex 1.

The fastening screws and the corresponding connections are subject to tension and shear forces.

Table 1 Different types of fastening screws

Annex	Fastening screw	Comp. I	Comp. I	Description
Annex 6	JT2-2-4,2 x L JT2-3-4,8 x L	steel	steel	with hexagon head or round head with Phillips®, Pozidriv® or Torx® drive system
Annex 7	JT2-2H/3-4,8 x L	steel	steel	with undercut, hexagon head and sealing washer ≥ Ø14 mm
Annex 8	JT2-2H-4,8 x L	steel	steel	with undercut and hexagon head
Annex 9	JT2-T-2H-4,8 x L	steel	steel	with undercut and round head with Torx® drive system
Annex 10	JT2-2H-5,5 x L	steel		with undercut, hexagon head and sealing washer ≥ Ø16 mm
Annex 11	JT2-3H-5,5 x L	steel		with undercut, hexagon head and sealing washer ≥ Ø16 mm
Annex 12	JT2-3H-5,5 x L	steel		with undercut, hexagon head and sealing washer ≥ Ø16 mm
Annex 13	JT2-3-5,5 x L	steel	steel	with hexagon head
Annex 14	JT2-3-5,5 x L	steel	steel	with hexagon head and sealing washer ≥ Ø16 mm
Annex 15	JT2-6-5,5 x L	steel	steel	with hexagon head
Annex 16	JT2-6-5,5 x L	steel	91221	with hexagon head and sealing washer ≥ Ø16 mm
Annex 17	JT2-8-5,5 x L	steel	steel	with hexagon head
Annex 18	JT2-8-5,5 x L	steel	steel	with hexagon head and sealing washer ≥ Ø16 mm
Annex 19	JT2-6-6,3 x L	steel	steel	with hexagon head
Annex 20	JT2-6-6,3 x L	steel	steel	with hexagon head and sealing washer ≥ Ø16 mm
Annex 21	JT2-12-5,5 x L	steel	steel	with hexagon head and sealing washer ≥ Ø16 mm
Annex 22	JT2-12-5,5 x L	steel	steei	with hexagon head and sealing washer ≥ Ø16 mm
Annex 23	JT3-2H-4,8 x L JT6-2H-4,8 x L	steel	steel	with undercut and hexagon head and sealing washer ≥ Ø14 mm

Page 4 of 117 | 27 June 2013

Annex	Fastening screw	Comp. I	Comp.	Description				
Annex 24	JT3-3H-4,8 x L JT6-3H-4,8 x L	steel	steel	with undercut, hexagon head and sealing washer ≥ Ø14 mm				
Annex 25	JT3-FR-2H-4,8 x L JT6-FR-2H-4,8 x L	steel	steel	with undercut, round head with Torx® drive system and sealing washer ≥ Ø11 mm				
Annex 26 ^{*)}	JT3- (FR-)2-4,9xL JT4- (FR-)2-4,9xL JT9- (FR-)2-4,9xL	alu 165 1)	timber	hexagon head or round head with Torx® drive system and sealing washer ≥ Ø11 mm				
Annex 27 ^{*)}	JT3- (FR-)2-4,9xL JT4- (FR-)2-4,9xL JT9- (FR-)2-4,9xL	Alu 215 2)	timber	hexagon head or round head with Torx® drive system and sealing washer ≥ Ø11 mm				
Annex 28	JT3-2H-5,5 x L JT6-2H-5,5 x L	steel	steel	with undercut, hexagon head and sealing washer ≥ Ø16 mm				
Annex 29	JT3-2-6,0 x L JT3-FR-2-6,0 x L JT6-2-6,0 x L JT6-FR-2-6,0 x L	alu 165	alu 165	with hexagon or round head and sealing washer ≥ Ø14 mm				
Annex 30	JT3-2-6,0 x L JT3-FR-2-6,0 x L JT6-2-6,0 x L JT6-FR-2-6,0 x L	alu 215	alu 215	with hexagon or round head and sealing washer ≥ Ø14 mm				
Annex 31	JT3-2-6,0 x L JT3-FR-2-6,0 x L JT6-2-6,0 x L JT6-FR-2-6,0 x L	alu 165	steel	with hexagon or round head and sealing washer ≥ Ø14 mm				
Annex 32	JT3-2-6,0 x L JT3-FR-2-6,0 x L JT6-2-6,0 x L JT6-FR-2-6,0 x L	alu 215	steel	with hexagon or round head and sealing washer ≥ Ø14 mm				
Annex 33 ^{*)}	JT3-2-6,0 x L JT3-FR-2-6,0 x L JT6-2-6,0 x L JT6-FR-2-6,0 x L	alu 165	timber	with hexagon or round head and sealing washer ≥ Ø14 mm				
Annex 34*)	JT3-2-6,0 x L JT3-FR-2-6,0 x L JT6-2-6,0 x L JT6-FR-2-6,0 x L	alu 215	timber	with hexagon or round head and sealing washer ≥ Ø14 mm				
Annex 35	JT3-2H Plus - 5,5 x L JT6-2H Plus - 5,5 x L JT3-FR-2H Plus - 5,5 x L JT6-FR-2H Plus - 5,5 x L	steel	steel	with undercut, hexagon head or round head with Torx® drive system and sealing washer ≥ Ø16 mm				
Annex 36	JT3-2H Plus - 5,5 x L JT6-2H Plus - 5,5 x L JT3-FR-2H Plus - 5,5 x L JT6-FR-2H Plus - 5,5 x L	steel	steel	with undercut, hexagon head or round head with Torx® drive system and sealing washer ≥ Ø16 mm				
Annex 37	JT3-FR-2H Plus-5,5 x L JT6-FR-2H Plus-5,5 x L	steel	steel	with undercut, round head with Torx® drive system and sealing washer ≥ Ø11 mm				
Annex 38	JT3-FR-2H Plus-5,5 x L JT6-FR-2H Plus-5,5 x L	steel	steel	with undercut, round head with Torx® drive system and sealing washer ≥ Ø11 mm				
Annex 39	JT3-2H Plus - 5,5 x L JT6-2H Plus - 5,5 x L JT3-FR-2H Plus - 5,5 x L JT6-FR-2H Plus - 5,5 x L	alu 165	alu 165	with undercut, hexagon head or round head with Torx® drive system and sealing washer ≥ Ø11 mm				

Page 5 of 117 | 27 June 2013

Annex	Fastening screw	Comp. I	Comp. I	Description
Annex 40	JT3-2H Plus - 5,5 x L JT6-2H Plus - 5,5 x L JT3-FR-2H Plus - 5,5 x L JT6-FR-2H Plus - 5,5 x L	alu 215	alu 215	with undercut, hexagon head or round head with Torx® drive system and sealing washer ≥ Ø11 mm
Annex 41	JT3-2H Plus - 5,5 x L JT6-2H Plus - 5,5 x L JT3-FR-2H Plus - 5,5 x L JT6-FR-2H Plus - 5,5 x L	alu 165	steel	with undercut, hexagon head or round head with Torx® drive system and sealing washer ≥ Ø11 mm
Annex 42	JT3-2H Plus - 5,5 x L JT6-2H Plus - 5,5 x L JT3-FR-2H Plus - 5,5 x L JT6-FR-2H Plus - 5,5 x L	alu 165	steel	with undercut, hexagon head or round head with Torx® drive system and sealing washer ≥ Ø11 mm
Annex 43	JT3-2H Plus - 5,5 x L JT6-2H Plus - 5,5 x L JT3-FR-2H Plus - 5,5 x L JT6-FR-2H Plus - 5,5 x L	alu 215	steel	with undercut, hexagon head or round head with Torx® drive system and sealing washer ≥ Ø11 mm
Annex 44	JT3-2H Plus - 5,5 x L JT6-2H Plus - 5,5 x L JT3-FR-2H Plus - 5,5 x L JT6-FR-2H Plus - 5,5 x L	alu 215	steel	with undercut, hexagon head or round head with Torx® drive system and sealing washer ≥ Ø11 mm
Annex 45	J16-3-5,5xL JT6-FR-3-5,5 x L		alu 165	with hexagon head or round head with Torx® drive system and sealing washer ≥ Ø16 mm
Annex 46	JT3-3-5,5xL IT3-FR-3-5 5yl		alu 215	with hexagon head or round head with Torx® drive system and sealing washer ≥ Ø16 mm
Annex 47	JT3-3-5,5xL JT3-FR-3-5,5xL JT6-3-5,5xL JT6-FR-3-5,5 x L	alu 165	steel	with hexagon head or round head with Torx® drive system and sealing washer ≥ Ø16 mm
Annex 48	JT3-3-5,5xL JT3-FR-3-5,5xL JT6-3-5,5xL JT6-FR-3-5,5 x L	alu 215	steel	with hexagon head or round head with Torx® drive system and sealing washer ≥ Ø16 mm
Annex 49	JT3-3H-5,5 x L JT6-3H-5,5 x L JT3-FR-3H-5,5 x L JT6-FR-3H-5,5 x L	steel	steel	with undercut, hexagon head or round head with Torx® drive system and sealing washer ≥ Ø16 mm
Annex 50	JT3-3H-5,5 x L		steel	with undercut, hexagon head or round head with Torx® drive system and sealing washer ≥ Ø16 mm
Annex 51	JT3-3-5,5 x L JT6-3-5,5 x L JT3-FR-3-5,5 x L JT6-FR-3-5,5 x L	steel	steel	with hexagon head or round head with Torx® drive system and sealing washer ≥ Ø16 mm
Annex 52	JT3-6-5,5 x L JT6-6-5,5 x L JT3-FR-6-5,5 x L JT6-FR-6-5,5 x L	steel	steel	with hexagon head or round head with Torx® drive system and sealing washer ≥ Ø16 mm

Page 6 of 117 | 27 June 2013

Annex	Fastening screw	Comp. I	Comp.	Description
Annex 53	JT3-6-5,5 x L JT6-6-5,5 x L JT3-FR-6-5,5 x L JT6-FR-6-5,5 x L	alu 165	alu 165	with hexagon head or round head with Torx® drive system and sealing washer ≥ Ø11 mm
Annex 54	JT3-6-5,5 x L JT6-6-5,5 x L JT3-FR-6-5,5 x L JT6-FR-6-5,5 x L	alu 215	alu 215	with hexagon head or round head with Torx® drive system and sealing washer ≥ Ø11 mm
Annex 55	JT3-6-5,5 x L JT6-6-5,5 x L JT3-FR-6-5,5 x L JT6-FR-6-5,5 x L	alu 165	steel	with hexagon head or round head with Torx® drive system and sealing washer ≥ Ø11 mm
Annex 56	JT3-6-5,5 x L JT6-6-5,5 x L JT3-FR-6-5,5 x L JT6-FR-6-5,5 x L	alu 215	steel	with hexagon head or round head with Torx® drive system and sealing washer ≥ Ø11 mm
Annex 57	JT3-12-5,5 x L JT6-12-5,5 x L JT3-FR-12-5,5 x L JT6-FR-12-5,5 x L	steel	steel	with hexagon head or round head with Torx® drive system and sealing washer ≥ Ø16 mm
Annex 58	JT3-12-5,5 x L JT6-12-5,5 x L JT3-FR-12-5,5 x L JT6-FR-12-5,5 x L	steel	steel	with hexagon head or round head with Torx® drive system and sealing washer ≥ Ø16 mm
Annex 59	JT3-12-5,5 x L JT6-12-5,5 x L JT3-FR-12-5,5 x L JT6-FR-12-5,5 x L	alu 165	alu 165	with hexagon head or round head with Torx® drive system and sealing washer ≥ Ø11 mm
Annex 60	JT3-12-5,5 x L JT6-12-5,5 x L JT3-FR-12-5,5 x L JT6-FR-12-5,5 x L	alu 215	alu 215	with hexagon head or round head with Torx® drive system and sealing washer ≥ Ø11 mm
Annex 61	JT3-12-5,5 x L JT6-12-5,5 x L JT3-FR-12-5,5 x L JT6-FR-12-5,5 x L	alu 165	steel	with hexagon head or round head with Torx® drive system and sealing washer ≥ Ø11 mm
Annex 62	JT3-12-5,5 x L JT6-12-5,5 x L JT3-FR-12-5,5 x L JT6-FR-12-5,5 x L	alu 215	steel	with hexagon head or round head with Torx® drive system and sealing washer ≥ Ø11 mm
Annex 63	JT3-6-6,3 x L JT6-6-6,3 x L	steel	steel	with hexagon head and sealing washer ≥ Ø16 mm
Annex 64	JT3-2-6,5 x L JT6-2-6,5 x L	steel	steel	with hexagon head and sealing washer ≥ Ø16 mm
Annex 65 ^{*)}	JT3-2-6,5 x L JT6-2-6,5 x L	steel	timber	with hexagon head and sealing washer ≥ Ø16 mm
Annex 66 ^{*)}	JT3-2-6,5 x L JT6-2-6,5 x L	alu 165	timber	with hexagon head and sealing washer ≥ Ø16 mm
Annex 67 ^{*)}	JT3-2-6,5 x L JT6-2-6,5 x L	alu 215	timber	with hexagon head and sealing washer ≥ Ø16 mm
Annex 68 ^{*)}	JT3-2-6,5 x L JT6-2-6,5 x L	steel	timber	with hexagon head and sealing washer ≥ Ø16 mm

Page 7 of 117 | 27 June 2013

Annex	Fastening screw	Comp. I	Comp. I	Description				
Annex 69 ^{*)}	JT3-2-6,5 x L JT6-2-6,5 x L	steel	timber	with hexagon head and sealing washer ≥ Ø16 mm				
Annex 70	JA1-6,5 x L	steel	steel	with hexagon head and sealing washer ≥ Ø16 mm				
Annex 71*)	JA1-6,5 x L	steel	timber	with hexagon head and sealing washer ≥ Ø16 mm				
Annex 72	JZ1-6,3 x L JB1-6,3 x L	steel	steel	with hexagon head and sealing washer ≥ Ø16 mm				
Annex 73	JZ1-6,3 x L	steel	steel	with hexagon head and sealing washer ≥ Ø22 mm				
Annex 74	JA3-6,5 x L	steel	steel	with hexagon head and sealing washer ≥ Ø16 mm				
Annex 75 ^{*)}	JA3-6,5 x L	steel	timber	with hexagon head and sealing washer ≥ Ø16 mm				
Annex 76	JA3-6,5 x L	alu 165	alu 165	with hexagon head and sealing washer ≥ Ø16 mm				
Annex 77	JA3-6,5 x L	alu 215	alu 215	with hexagon head and sealing washer ≥ Ø16 mm				
Annex 78	JA3-6,5 x L	alu 165	steel	with hexagon head and sealing washer ≥ Ø16 mm				
Annex 79	JA3-6,5 x L	alu 215	steel	with hexagon head and sealing washer ≥ Ø16 mm				
Annex 80	JZ3-6,3 x L JB3-6,3 x L	steel	steel	with hexagon head and sealing washer ≥ Ø16 mm				
Annex 81	JZ3-6,3 x L	steel	steel	with hexagon head and sealing washer ≥ Ø22 mm				
Annex 82	JZ3-6,3 x L JB3-6,3 x L	alu 165	alu 165	with hexagon head and sealing washer ≥ Ø16 mm				
Annex 83	JZ3-6,3 x L JB3-6,3 x L	alu 215	alu 215	with hexagon head and sealing washer ≥ Ø16 mm				
Annex 84	JZ3-6,3 x L JB3-6,3 x L	alu 165	steel	with hexagon head and sealing washer ≥ Ø16 mm				
Annex 85	JZ3-6,3 x L JB3-6,3 x L	alu 215	steel	with hexagon head and sealing washer ≥ Ø16 mm				
Annex 86	JZ3-8,0 x L	steel	steel	with hexagon head and sealing washer ≥ Ø22 mm				
Annex 87	JZ7-6,3 x L JB7-6,3 x L	steel	steel	with hexagon head and sealing washer ≥ Ø16 mm				
Annex 88	JZ7-6,3 x L JB7-6,3 x L	steel	steel	with hexagon head and sealing washer ≥ Ø22 mm				
Annex 89	JF3-2H-4,8 x L		steel	with hexagon head or round head with Torx® drive system and sealing washer ≥ Ø14 mm				
Annex 90	alu 165	alu 165	with hexagon head or round head with Torx® drive system and sealing washer ≥ Ø14 mm					
Annex 91	JF3-2H-4,8 x L JF6-2H-4,8 x L JF3-FR-2H-4,8 x L JF6-FR-2H-4,8 x L	alu 215	alu 215	with hexagon head or round head with Torx® drive system and sealing washer ≥ Ø14 mm				

Page 8 of 117 | 27 June 2013

Annex	Fastening screw	Comp. I	Comp. I	Description
Annex 92	JF3-2H-4,8 x L JF6-2H-4,8 x L JF3-FR-2H-4,8 x L JF6-FR-2H-4,8 x L	alu 165	steel	with hexagon head or round head with Torx® drive system and sealing washer ≥ Ø14 mm
Annex 93	JF3-2H-4,8 x L JF6-2H-4,8 x L JF3-FR-2H-4,8 x L JF6-FR-2H-4,8 x L	alu 215	steel	with hexagon head or round head with Torx® drive system and sealing washer ≥ Ø14 mm
Annex 94	JF2-2H-4,8 x L	steel	steel	with hexagon head
Annex 95	JF3-2-5,5xL JF6-2-5,5xL JF3-FR-2-5,5xL JF6-FR-2-5,5xL	steel	steel	with hexagon head or round head with Torx® drive system and sealing washer ≥ Ø11 mm
Annex 96	JF3-2-5,5xL JF6-2-5,5xL JF3-FR-2-5,5xL JF6-FR-2-5,5xL		steel	with hexagon head or round head with Torx® drive system and sealing washer ≥ Ø14 mm
Annex 97	JF3-2-5,5xL JF6-2-5,5xL JF3-FR-2-5,5xL JF6-FR-2-5,5xL	alu 165	alu 165	with hexagon head or round head with Torx® drive system and sealing washer ≥ Ø14 mm
Annex 98	JF3-2-5,5xL JF6-2-5,5xL JF3-FR-2-5,5xL JF6-FR-2-5,5xL	alu 215	alu 215	with hexagon head or round head with Torx® drive system and sealing washer ≥ Ø14 mm
Annex 99	JT3-LT-3-5,5xL JT6-LT-3-5,5xL	steel	steel	round head with Torx® drive system
Annex 100	JT3-LT-3-5,5xL JT6-LT-3-5,5xL	steel	steel	round head with Torx® drive system and sealing washer ≥ Ø11 mm
Annex 101	IT/L/1 8vI		alu 165	with hexagon head
Annex 102	J19-4-4,8xL		alu 215	with hexagon head
Annex 103	JT4-6-5,5xL JT9-6-5,5xL	alu 165	alu 165	with hexagon head
Annex 104	JT4-6-5,5xL JT9-6-5,5xL	alu 215	alu 215	with hexagon head

^{*)} These fastening screws are applicable for fastening to timber substructures

1.2 Intended use

The fastening screws are intended to be used for fastening steel sheeting to steel substructures and as far as stated in Table 1 to timber substructures. The sheeting can either be used as wall or roof cladding or as load bearing wall and roof element.

The fastening screws can also be used for the fastening of other thin gauge steel members.

The component to be fastened is component I and the substructure is component II.

¹⁾ Aluminum alloy with R_{m,min} of 165 N/mm²

²) Aluminum alloy with R_{m,min} of 215 N/mm²

Page 9 of 117 | 27 June 2013

The intended use comprises fastening screws and connections for indoor and outdoor applications. Fastening screws which are made of stainless steel are intended to be used in external environments with a high or very high corrosion category.

The intended use comprises connections with predominantly static loads (e.g. wind loads, dead loads).

The provisions made in this European technical approval are based on an assumed working life of the fastening screws of 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

2 Characteristics of product and methods of verification

2.1 Characteristics of product

The fastening screws shall correspond to the drawings given in the appropriate Annexes (see Table 1).

The characteristic material values, dimensions and tolerances of the fastening screws neither indicated in this section nor in the Annexes shall correspond to the respective values laid down in the technical documentation⁷ to this European technical approval.

The characteristic values of the shear and tension resistance of the connections made with the fastening screws are given in the appropriate Annexes or in section 4.2.

The fastening screws are considered to satisfy the requirements of performance class A1 of the characteristic reaction to fire.

2.2 Methods of verification

The assessment of the fitness of the fastening screws for the intended use in relation to the Essential Requirements ER 1 (Mechanical resistance and stability), ER 2 (Safety in case of fire), ER 4 (Safety in use) and additional aspects of durability has been made in accordance with section 3.2 of the Common Procedural Rules for Requesting, Preparing and the Granting of European technical approvals set out in the Annex to Commission Decision 94/23/EC⁶.

The assessment of the resistance to fire performance is only relevant to the assembled system (fastening screws, sheeting, substructure) which is not part of the ETA.

The fastening screws are considered to satisfy the requirements of performance class A 1 of the characteristic reaction to fire, in accordance with the provisions of the EC Decision 96/603/EC (as amended) without the need for testing on the basis of its listing in that decision.

Concerning Essential Requirements No. 1 (Mechanical resistance and stability) and No. 4 (Safety in use) the following applies:

The characteristic values of resistance given in the Annexes were determined by shear and tension tests.

The formulas to calculate the design resistance are given in clause 4.2.1.

The technical documentation to this European technical approval is deposited at Deutsches Institut für Bautechnik and, as far as relevant fort the tasks of the approved bodies involved in the attestation of conformity procedure is handed over to the approved bodies.

Page 10 of 117 | 27 June 2013

3 Evaluation and attestation of conformity and CE marking

3.1 System of attestation of conformity

According to the Decision 99/92 of the European Commission⁸ system 3 of the attestation of conformity applies.

This system of attestation of conformity is defined as follows:

System 3: Declaration of conformity of the product by the manufacturer on the basis of:

- (a) Tasks for the manufacturer:
 - (1) factory production control;
- (b) Tasks for the approved body:
 - (2) initial type-testing of the product.

Note: Approved bodies are also referred to as "notified bodies".

3.2 Responsibilities

3.2.1 Tasks for the manufacturer

3.2.1.1 Factory production control

The manufacturer shall exercise permanent internal control of production. All the elements, requirements and provisions adopted by the manufacturer shall be documented in a systematic manner in the form of written policies and procedures, including records of results performed. This production control system shall insure that the product is in conformity with this European technical approval.

The manufacturer may only use initial materials stated in the technical documentation of this European technical approval.

The factory production control shall be in accordance with the "control plan relating to this European technical approval" which is part of the technical documentation of this European technical approval. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited with Deutsches Institut für Bautechnik.⁹

The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

3.2.1.2 Other tasks for the manufacturer

The manufacturer shall, on the basis of a contract, involve a body which is approved for the tasks referred to in section 3.1 in the field of fastening screws in order to undertake the actions laid down in section 3.2.2. For this purpose, the control plan referred to in sections 3.2.1.1 and 3.2.2 shall be handed over by the manufacturer to the approved body involved.

The manufacturer shall make a declaration of conformity, stating that the construction product is in conformity with the provisions of this European technical approval.

3.2.2 Tasks for the approved bodies

The approved body shall perform the

- initial type-testing of the product,

in accordance with the provisions laid down in the control plan.

The approved body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in written reports.

Official Journal of the European Communities L 80 of 18.03.1998.

The "control plan" is a confidential part of the European technical approval and only handed over to the approved body involved in the procedure of attestation of conformity. See section 3.2.2.

Page 11 of 117 | 27 June 2013

3.3 CE marking

The CE marking shall be affixed on each packaging of fastening screws. The letters "CE" shall be followed by the identification number of the approved certification body, where relevant, and be accompanied by the following additional information:

- the name and address of the producer (legal entity responsible for the manufacture),
- the last two digits of the year in which the CE marking was affixed,
- the number of the European technical approval,
- the name of the product.

4 Assumptions under which the fitness of the product for the intended use was favourably assessed

4.1 Manufacturing

The fastening screws are manufactured in accordance with the provisions of the European technical approval using the manufacturing process as laid down in the technical documentation.

The European technical approval is issued for the product on the basis of agreed data/information, deposited with Deutsches Institut für Bautechnik, which identifies the product that has been assessed and judged. Changes to the product or production process, which could result in this deposited data/information being incorrect, should be notified to Deutsches Institut für Bautechnik before the changes are introduced. Deutsches Institut für Bautechnik will decide whether or not such changes affect the approval and consequently the validity of the CE marking on the basis of the approval and if so whether further assessment or alterations to the approval shall be necessary.

4.2 Design

4.2.1 General

Fastening screws completely or partly exposed to external weather or similar conditions are made of stainless steel or are protected against corrosion. For the corrosion protection the rules given in EN 1090-2:2008 + A1:2011, EN 1993-1-3:2006 + AC:2009 and EN 1993-1-4:2006 are taken into account.

For the types of connection (a, b, c, d) listed in the Annexes it is not necessary to take into account the effect of constraints due to temperature. For other types of connection it shall be considered for design as long as constraining forces due to temperature do not occur or are not significant (e. g. sufficient flexibility of the structure).

The loading is predominantly static. (Remark: Wind loads are regarded as predominantly static.)

Dimensions, material properties, torque moments $M_{t,norm}$, minimum effective screw-in length l_{ef} and nominal material thicknesses t_N as stated in the ETA or in the Annexes are observed.

The verification concept stated in EN 1990:2002 + A1:2005 +A1:2005/AC:2010 is used for the design of the connections made with the fastening screws. The characteristic values (shear and tension resistance) stated in the Annexes are used for the design of the entire connections.

The following formulas are used to calculate the values of design resistance:

$$N_{Rd} = \frac{N_{Rk}}{\gamma_M}$$

$$V_{Rd} = \frac{V_{Rk}}{\gamma_M}$$

Page 12 of 117 | 27 June 2013

The recommended partial safety factor γ_M = 1.33 is used in order to determine the corresponding design resistances, provided no values are given in national regulations of the member state in which the fastening screws are used or in the respective National Annex to Eurocode 3.

In case of combined tension and shear forces the linear interaction formula according to EN 1993-1-3:2006 + AC:2009, section 8.3 (8) is taken into account.

$$\frac{N_{Sd}}{N_{Rd}} + \frac{V_{Sd}}{V_{Rd}} \le 1.0$$

The possibly required reduction of the tension resistance (pull-through resistance) due to the position of the fastener is taken into account:

- in accordance with EN 1993 1 3:2006+ AC:2009, section 8.3 (7) and Fig. 8.2 (component I is made of steel) or EN 1999-1-4:2007 + A1:2011, section 8.1 (6) and Table 8.3 (component I is made of aluminium).
- of 0.7 if the supporting structure is an asymmetric profile (e.g. Z-profile) with t_{II} < 5 mm

4.2.2 Additional rules for connections with timber substructures

As far as no other provisions are made in the following EN 1995-1-1:2004 + A1:2008 applies. Drill points of self drilling screws are not taken into account for the effective screw-in length.

The following terms are used:

l_g - Screw-in length - part of thread screwed into component II including drill point.

I_b - Length of unthreaded part of the drill-point.

 I_{ef} - effective screw-in length $I_{ef} = I_a - I_b$

 $N_{R,k}$ = $F_{ax,Rk} \cdot k_{mod}$ $V_{R,k}$ = $F_{v,Rk} \cdot k_{mod}$

F_{ax.Rk} according to EN 1995-1-1:2004 + A1:2008, equation (8.40a)

Remark: $F_{ax,Rk} = F_{ax,\alpha,Rk}$ with $\alpha = 90^{\circ}$

 $F_{v,Rk}$ according to EN 1995-1-1:2004 + A1:2008, clause 8.2.3 k_{mod} according to EN 1995-1-1:2004 + A1:2008, Table 3.1

 $M_{y,Rk}$ in equation (8.9) of EN 1995-1-1:2004 + A1:2008 and $f_{ax,k}$ in equation (8.40a) of EN 1995-1-1:2004 + A1:2008 are given in the Annexes of this ETA.

The characteristic values for pullout and bearing resistance (timber substructure) calculated according to EN 1995-1-1:2004 + A1:2008 are compared with the characteristic values for component I (pull over and bearing resistance) stated in the right column of the table in the appropriate Annexes. The lower value is used for further calculations.

4.2.3 Additional rules for fastening of perforated sheets

For the fastening of perforated sheets (structural part I) only fastening screws with diameters given in Annexes 2, 3, 4 or 5 are used for which characteristic values are given in the following Annexes for unperforated sheets of same thickness and strength class as for the perforated sheets

For the calculation of the connection the characteristic values for the connection of unperforated sheets according to the relevant Annex and the characteristic values for the connection of perforated sheets according to Annex 2, 3, 4 or 5 are determined. The lower values are used for further calculations.

The fastening to perforated sheets (structural part II) is not ruled in this ETA.

Page 13 of 117 | 27 June 2013

4.3 Installation

The installation is only carried out according to the manufacturer's instructions. The manufacturer hands over the assembly instructions to the assembler.

It is guaranteed by the execution that no bimetallic corrosion will occur.

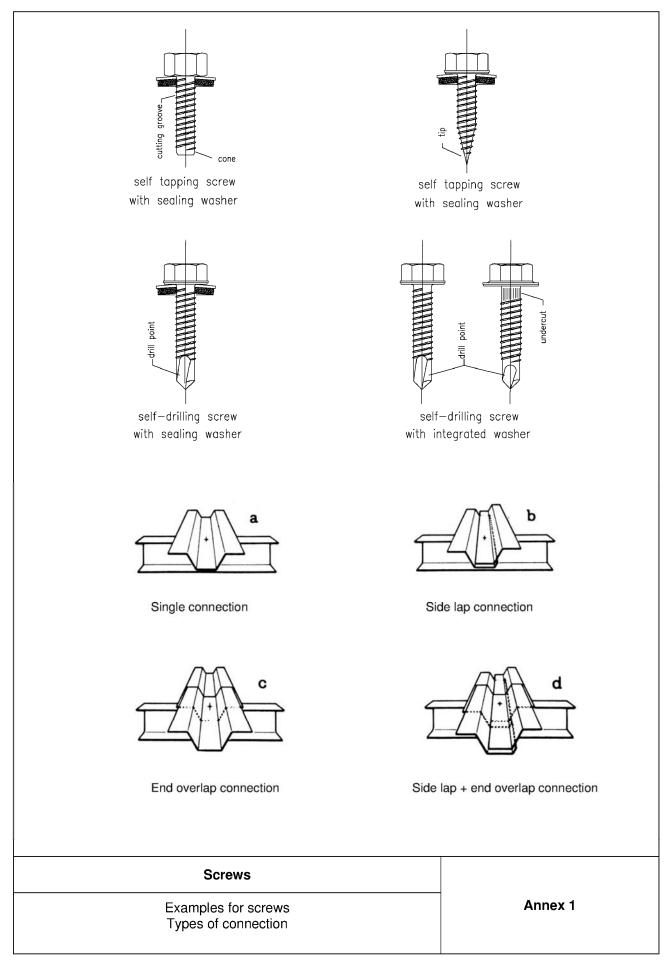
For regular shear forces the components I and II are directly connected to each other so that the fastening screws do not get additional bending. The use of compression resistant thermal insulation strips up to a thickness of 3 mm is allowed.

The fastening screws are fixed rectangular to the surface of the components to guarantee a correct load bearing and if necessary rain-proof connection.

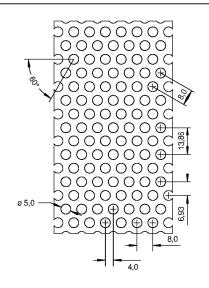
Fastening screws for steel substructures are screwed in with the cylindrical part of the thread at least 6 mm if the substructure has a thickness over 6 mm unless otherwise declared in the manufacturer's instruction. Welded drill points are not taken into account for the screw-in length.

The conformity of the installed fasteners with the provisions of the ETA is attested by the executing company.

5 Indications to the manufacturer


It is in the responsibility of the manufacturer to ensure that the information on the specific conditions according to 1, 2, 4.2 and 4.3 (including Annexes referred to) is given to those who are concerned. This information may be given by reproduction of the respective parts of the European technical approval.

In addition all installation data (predrill diameter, torque moment, application limits) shall be shown clearly on the package and/or on an enclosed instruction sheet, preferably using illustration(s).


Andreas Kummerow p. p. Head of Department

beglaubigt: Ulbrich

Type of self tapping screw Ø6,3 mm and Ø6,5 mm

<u>Fastener</u> an

self drilling screw from Ø5,5 mm to Ø6,3 mm

<u>Materials</u>

Fastener: stainless steel - EN 10088 or similiar

Washer: stainless steel - EN 10088

EPDM sealing washer

Component I: S280GD, S320GD or S350GD - EN 10346

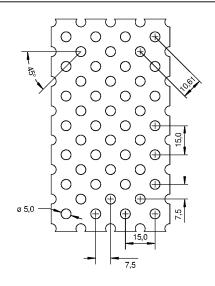
Component II: at least S235 - EN 10025-1 or

at least S280GD - EN 10346 or

structural timber at least strength grade C24

	pattern	

ch	eet /	perforated sheets made of S280GD					d sheets		perforated sheets made of S350GD					
	asher			: 360 N/r		I		: 390 N/i				= 420 N/i		
									25 mm					
М	t,nom	5 Nm												
	0,50		_	_	_	_	_		_	_	_	_	_	
-	0,55	_	_	_	_	_			_	_	_	_	_	
<u> </u>	0,63	_	_	_	_	_			_	_	_	_	_	
for t _{N,I} [mm]	0,75	2,16	2,22	2,24	2,38	2,34	2,40	2,44	2,58	2,54	2,60	2,62	2,78	
ξ	0,88	2,56	2,64	2,64	2,78	2,78	2,86	2,86	3,02	3,00	3,10	3,10	3,26	
	1,00	2,92	3,04	3,02	3,16	3,16	3,30	3,26	3,42	3,42	3,56	3,52	3,68	
V _{R,k} [kN]	1,13	3,32	3,48	3,42	3,56	3,60	3,76	3,70	3,86	3,88	4,10	4,00	4,16	
>	1,25	3,70	3,88	3,80	3,94	4,00	4,20	4,10	4,26	4,32	4,54	4,42	4,60	
	1,50	4,46	4,74	4,56	4,72	4,84	5,12	4,96	5,10	5,22	5,54	5,34	5,50	
	0,50	_	_	_	_	_	_	_	_	_	_	_	_	
-	0,55	_	—	_	_	_	_	_	_	_	_	_	_	
<u> </u>	0,63	_	_	_	_	_	_	_	_	_	_	_	_	
Į,	0,75	1,40	1,94	2,14	2,22	1,52	2,08	3,32	2,42	1,64	2,26	2,50	2,60	
for t _{N,I} [mm]	0,88	1,82	2,34	2,62	2,70	1,96	2,54	2,82	2,92	2,12	2,74	3,04	3,14	
	1,00	2,24	2,74	3,06	3,14	2,44	2,96	3,32	3,42	2,62	3,20	3,58	3,68	
N _{R,k} [kN]	1,13	2,74	3,18	3,58	3,64	2,98	3,44	3,88	3,96	3,20	3,70	4,18	4,26	
=	1,25	3,24	3,58	4,08	4,12	3,52	3,88	4,40	4,46	3,78	4,18	4,76	4,80	
	1,50	4,36	4,46	5,12	5,12	4,74	4,84	5,56	5,56	5,10	5,22	5,98	5,98	


The thickness of the perforated sheets which are exposed to wind loads shall be at least 1,00 mm.

For intermediate values of the washer diameter the characteristic values for the washer with the smaller diameter shall be used.

Fastening of perforated sheets

Annex 2

Type of self tapping screw Ø6,3 mm and Ø6,5 mm

<u>Fastener</u> and

self drilling screw from Ø5,5 mm to Ø6,3 mm

<u>Materials</u>

Fastener: stainless steel - EN 10088 or similiar

Washer: stainless steel - EN 10088

EPDM sealing washer

Component I: S280GD - EN 10346

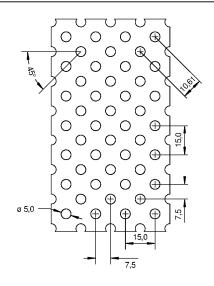
Component II: at least S235 - EN 10025-1 or

at least S280GD - EN 10346 or

structural timber at least strength grade C24

Hole pattern II

sc	rew /	self drillin	g screws Ø	5,5 mm and	Ø6,0 mm		self tapping g screws Ø		
Øw	asher	16 mm	19 mm	22 mm	25 mm	16 mm	19 mm	22 mm	25 mm
М	t,nom			•	51	Vm		•	•
	0,50	_	_	_	_	_	_	_	_
-	0,55	_	_	_	_	_	_	_	_
V _{R,k} [kN] for t _{N,I} [mm]	0,63			_	_	_	_	_	
Ę,	0,75 2,48 2,52 2,84		2,76	2,38	2,64	3,16	3,24		
ģ	0,88 3,04 3,12 3,42		3,32	3,02	3,28	3,78	3,88		
ĺŜ	1,00	3,56	3,70	3,84	3,84	3,64	3,96	4,36	4,50
*	1,13			4,40	4,36	4,70	5,00	5,18	
>	1,25			4,94	5,06	5,40	5,60	5,84	
	1,50	5,76	6,04	5,90	6,10	6,62	6,94	6,88	7,16
	0,50	_		_	_	_	_	_	_
=	0,55	_	_	_	_	_	_	_	_
for t _{N,I} [mm]	0,63	_	_	_	_	_	_	_	_
Ţ.	0,75	2,88	3,16	3,24	3,14	2,86	3,46	3,72	3,92
ģ	0,88	3,42	3,72	3,76	3,70	3,40	4,02	4,30	4,46
N _{R,k} [kN]	1,00			4,20	3,90	4,56	4,82	4,96	
*	1,13			4,72	4,44	5,12	5,38	5,48	
Ž	1,25			5,26	4,94 5,66		5,88	5,94	
	1,50	6,04	6,60	6,60	6,38	6,00	6,74	6,92	6,90


The thickness of the perforated sheets which are exposed to wind loads shall be at least 1,00 mm.

For intermediate values of the washer diameter the characteristic values for the washer with the smaller diameter shall be used.

Fastening of perforated sheets

Annex 3

Type of self tapping screw Ø6,3 mm and Ø6,5 mm

<u>Fastener</u> and

self drilling screw from Ø5,5 mm to Ø6,3 mm

<u>Materials</u>

Fastener: stainless steel - EN 10088 or similiar

Washer: stainless steel - EN 10088

EPDM sealing washer

Component I: S320GD - EN 10346

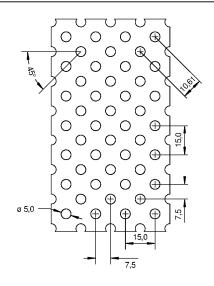
Component II: at least S235 - EN 10025-1 or

at least S280GD - EN 10346 or

structural timber at least strength grade C24

Hole pattern II

	rew /	self drillin	g screws Ø	5,5 mm and	Ø6,0 mm		self tapping g screws Ø			
Øw	asher	16 mm	19 mm	22 mm	25 mm	16 mm	19 mm	22 mm	25 mm	
М	t,nom	5 Nm								
	0,50	_	_	_	_	_	_	_	_	
-	0,55	_	_	_	_	_	_	_	_	
<u> </u>	0,63	_	_	_	_	_	_	_	_	
V _{R,k} [kN] for t _{N,I} [mm]	0,75	2,68 2,74 3,08		3,00	2,68	2,88	3,42	3,50		
ģ	0,88	3,30 3,38 3,70		3,60	3,36	3,60	4,10	4,22		
Î	1,00	3,86 4,00 4,16		4,16	4,02	4,30	4,72	4,88		
×	1,13	4,48	4,62	4,76	4,76	4,76	5,08	5,42	5,60	
>	1,25	5,06	5,24	5,32	5,36	5,50	5,84	6,08	6,30	
	1,50	6,24	6,54	6,40	6,60	7,10	7,52	7,46	7,76	
	0,50	_	_	_	_	_	_	_	_	
=	0,55	_	_	_	_	_	_	<u>—</u>	_	
<u> </u>	0,63	_	_	_	_	_	_	_	_	
Ţ.	0,75	3,12	3,42	3,50	3,40	3,12	3,68	4,06	4,26	
ģ	0,88	3,70	4,04	4,08	4,00	3,70	4,32	4,68	4,86	
N _{R,k} [kN] for t _{N,I} [mm]	1,00			4,54	4,24	4,92	5,24	5,40		
*	1,13			5,12	4,84	5,54	5,86	5,96		
2	1,25	5,38	5,88	5,88	5,70	5,38	6,14	6,40	6,48	
	1,50	6,54	7,16	7,16	6,92	6,54	7,38	7,54	7,52	


The thickness of the perforated sheets which are exposed to wind loads shall be at least 1,00 mm.

For intermediate values of the washer diameter the characteristic values for the washer with the smaller diameter shall be used.

Fastening of perforated sheets

Annex 4

Type of self tapping screw Ø6,3 mm and Ø6,5 mm

<u>Fastener</u> and

self drilling screw from Ø5,5 mm to Ø6,3 mm

<u>Materials</u>

Fastener: stainless steel - EN 10088 or similiar

Washer: stainless steel - EN 10088

EPDM sealing washer

Component I: S350GD - EN 10346

Component II: at least S235 - EN 10025-1 or

at least S280GD - EN 10346 or

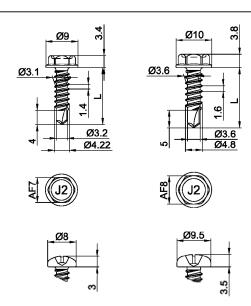
structural timber at least strength grade C24

Hole pattern II

sc	rew /	self drillin	g screws Ø	5,5 mm and	Ø6,0 mm		self tapping g screws Ø		
Øw	asher	16 mm	19 mm	22 mm	25 mm	16 mm	19 mm	22 mm	25 mm
М	t,nom				51	٧m	•		
	0,50	_	_	_	_	_	_	_	_
-	0,55	_	_	_	_	_	_	_	_
٤	0,63	_	_	_	_	_	_	_	_
V _{R,k} [kN] for t _{N,I} [mm]	0,75	2,88 2,92 3,30		3,20	2,98	3,20	3,72	3,92	
ģ	0,88	3,54			3,86	3,62	3,88	4,42	4,54
Î	1,00	4,14 4,28 4,46		4,46	4,24	4,52	5,08	5,12	
×	1,13	4,80	4,94	5,10	5,10	4,92	5,24	5,78	5,74
>	1,25	5,44	5,62	5,70	5,72	5,56	5,92	6,46	6,32
	1,50	6,24	6,54	6,40	7,02	6,94	7,36	7,86	7,48
	0,50	_	_	_	_	_	_	_	_
=	0,55	_	_	_	_	_	_	_	_
<u> </u>	0,63	_	_	_	_	_	_	_	_
Ţ.	0,75	3,34	3,66	3,76	3,64	3,52	4,16	4,52	4,64
ģ	0,88	3,96	4,36	4,38	4,28	3,98	4,74	5,04	5,24
N _{R,k} [kN] for t _{N,I} [mm]	1,00	4,54			4,86	4,40	5,24	5,50	5,76
*	1,13	5,16	5,64	5,64 5,64		4,86	5,76	5,96	6,32
2	1,25	5,80	6,28	6,28	6,14	5,38	6,24	6,40	6,80
	1,50	6,54	7,16	7,16	7,46	6,54	7,38	7,54	7,80

The thickness of the perforated sheets which are exposed to wind loads shall be at least 1,00 mm.

For intermediate values of the washer diameter the characteristic values for the washer with the smaller diameter shall be used.


Fastening of perforated sheets

Annex 5

Page 19 of European technical approval ETA-10/0200 of 27 June 2013

English translation prepared by DIBt

Materials

Fastener: carbon steel

case hardened and galvanized

Washer: none

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

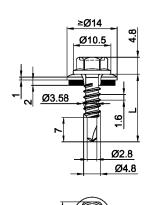
S280GD, S320GD or S350GD - EN 10346

<u>Drilling capacity</u> see remark below

Timber substructures

no performance determined

t _{N,II}	[m m]	0,6	3	0,7	'5	0,8	88	1,0	0	1,1	3	1,2	25	1,5	50	2,0	00	
	√l _{t,nom}				JT	2-4,2 x	-4,2 x L: 4 Nm						_					
	• rt,nom		JT	2-4,8 x	L: 4 N	١m					JT	2-4,8 x	L:51	I m				
	0,50	—	_	—	_	-	_	—	_	—	_	—	_	—	_	-	_	
	0,55	—	_	—	_	—	_	—	_	—	_	_	_	_	_	<u> </u>	_	
1=	0,63	1,50	_	1,90	_	1,90	_	1,90	_	1,90	_	1,90	ac	1,90	ac	1,90	ac	
<u>E</u>	0,75	1,50	_	1,90	_	2,00	_	2,00	_	2,00	_	2,00	ac	2,00	ac	2,00	ac	
, <u>₹</u>	0,88	1,50	_	1,90	_	2,30	_	2,30	_	2,30	_	2,30	а	2,30	а	2,30	а	
ξ	1,00	1,50	_	1,90	_	2,30	_	2,60	_	2,60	_	2,60	_	2,60	а	2,60	а	
ΙZ	1,13	1,50	_	1,90	_	2,30	_	2,80	_	2,90	_	2,90	_	2,90	_	2,90	_	
V _{R,k} [kN] for t _{N,I} [mm]	1,25	1,50	_	1,90	_	2,30	_	2,80	_	2,90	_	3,20	_	3,20	_	3,20	_	
>	1,50	1,50	_	1,90	_	2,30	_	2,80	_	2,90	_	3,20	_	3,70	_	3,70	_	
	1,75	1,50	_	1,90	_	2,30	_	2,80	_	2,90	_	3,20	_	3,70	_	3,70	_	
	2,00	1,50	_	1,90	_	2,30	_	2,80	_	2,90	_	3,20	_	3,70	_	3,70	_	
	0,50	_	_		_	_	_		_	_	_	_	_	_	_	<u> </u>	_	
	0,55	—	_	—	_	l —	_	—	_	—	_	—	_	—	_	—	_	
1=	0,63	0,50	_	0,70	_	1,00	_	1,30	_	1,40	_	1,40	ac	1,40	ac	1,40	ac	
١Ē	0,75	0,50	_	0,70	_	1,00	_	1,30	_	1,50	_	1,50	ac	1,50	ac	1,50	ac	
, <u>z</u>	0,88	0,50	_	0,70	_	1,00	_	1,30	_	1,50	_	1,60	а	1,60	а	1,60	а	
ρ	1,00	0,50	_	0,70	_	1,00	_	1,30	_	1,50	_	1,70	_	1,80	а	1,80	а	
ĮŹ	1,13	0,50	_	0,70	_	1,00	_	1,30	_	1,50	_	1,70	_	1,90	_	1,90	_	
N _{R,k} [kN] for t _{N,1} [mm]	1,25	0,50	_	0,70	_	1,00	_	1,30	_	1,50	_	1,70	_	2,00	_	2,00	_	
ž	1,50	0,50	_	0,70	_	1,00	_	1,30	_	1,50	_	1,70	_	2,20	_	2,20	_	
	1,75	0,50	_	0,70	_	1,00	_	1,30	_	1,50	_	1,70	_	2,20	_	2,20	_	
	2,00	0,50	_	0,70	_	1,00	_	1,30	_	1,50	_	1,70	_	2,20	_	2,20	_	


Grey highlighted values only for the fastener JT2-4,8 x L

JT2-2-4,2 x L: drilling capacity $\Sigma t_i \leq 2,5$ mm JT2-3-4,8 x L: drilling capacity $\Sigma t_i \leq 4,0$ mm

		Self drilling screw
JT2-2-4,2 x L JT2-3-4 8 x I	Annex 6	•

with hexagon head or round head with Phillips®, Pozidriv® or Torx® drive system

<u>Materials</u>

Fastener: carbon steel

case hardened and galvanized

Washer: carbon steel, galvanized

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

S280GD, S320GD or S350GD - EN 10346

Drilling capacity

 $\Sigma t_i \leq 2{,}20~mm$

Timber substructures

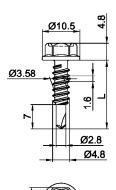
no performance determined

t _{N,II}	[m m]	0,40	0,50	0,55	0,63	0,75	0,88	1,00	1,13	1,25	1,50	1,75
IV	$1_{\rm t,nom}$						_	•	•	•	•	
	0,40	0,71	0,71	0,71	0,71	0,71	0,71	0,71	0,71	0,71	0,71	0,71
	0,50	0,71	1,18	1,18	1,18	1,18	1,18	1,18	1,18	1,18	1,18	_
1=	0,55	0,71	1,18	1,42	1,42	1,42	1,42	1,42	1,42	1,42	1,42	_
<u> </u>	0,63	0,71	1,18	1,42	1,71	1,71	1,71	1,71	1,71	1,71	1,71	_
± <u>z</u> ;	0,75	0,71	1,18	1,42	1,71	2,14	2,14	2,14	2,14	2,14	_	_
fo	0,88	0,71	1,18	1,42	1,71	2,14	2,52	2,52	2,52	2,52	_	_
ĮŜ	1,00	0,71	1,18	1,42	1,71	2,14	2,52	2,86	2,86	_	_	_
V _{R.k} [kN] for t _{N,I} [mm]	1,13	0,71	1,18	1,42	1,71	2,14	2,52	2,86	_	_	_	_
>	1,25	0,71	1,18	1,42	1,71	2,14	2,52	_	_	_	_	_
	1,50	0,71	1,18	1,42	1,71	_	_	_	_	_	_	_
	1,75	0,71	_	_	_	_		_	_	_	_	_
	0,40	0,42	0,62	0,72	0,88	1,08	1,08	1,08	1,08	1,08	1,08	1,08
	0,50	0,42	0,62	0,72	0,88	1,12	1,38	1,54	1,54	1,54	1,54	_
=	0,55	0,42	0,62	0,72	0,88	1,12	1,38	1,62	1,62	1,62	1,62	_
Ē	0,63	0,42	0,62	0,72	0,88	1,12	1,38	1,62	1,62	1,62	1,62	_
Ţ.	0,75	0,42	0,62	0,72	0,88	1,12	1,38	1,62	1,62	1,62	_	_
ðو	0,88	0,42	0,62	0,72	0,88	1,12	1,38	1,62	1,62	1,62	_	_
ΙŜ	1,00	0,42	0,62	0,72	0,88	1,12	1,38	1,62	1,62	_	_	_
N _{R,k} [kN] for t _{N,I} [mm]	1,13	0,42	0,62	0,72	0,88	1,12	1,38	1,62	_	_	_	
z	1,25	0,42	0,62	0,72	0,88	1,12	1,38	_	_	_	_	_
	1,50	0,42	0,62	0,72	0,88	—	_	_	_	_	_	-
	1,75	0,42	—	_	_	_	_	_	_	_	_	_

If both components I and II are made of S320GD or S350GD the values may be increased by 8,3%.

Self drilling screw

JT2-2H/3-4,8 x L


with undercut, hexagon head and sealing washer ≥ Ø14 mm

Annex 7

Page 21 of European technical approval ETA-10/0200 of 27 June 2013

English translation prepared by DIBt

Materials

Fastener: carbon steel

case hardened and galvanized

Washer: none

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

S280GD, S320GD or S350GD - EN 10346

Drilling capacity

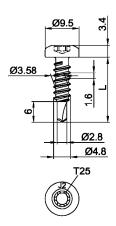
 $\Sigma t_i \leq 2{,}20~mm$

Timber substructures

no performance determined

t _{N,II}	[m m]	0,40	0,50	0,55	0,63	0,75	0,88	1,00	1,13	1,25	1,50	1,75
IV	$1_{\rm t,nom}$						_			•	•	
	0,40	0,92	0,92	0,92	0,92	0,92	0,92	0,92	0,92	0,92	0,92	0,92
	0,50	0,92	1,42	1,42	1,42	1,42	1,42	1,42	1,42	1,42	1,42	_
1=	0,55	0,92	1,42	1,67	1,67	1,67	1,67	1,67	1,67	1,67	1,67	_
<u> </u>	0,63	0,92	1,42	1,67	1,87	1,87	1,87	1,87	1,87	1,87	1,87	_
± <u>z</u> ;	0,75	0,92	1,42	1,67	1,87	2,16	2,16	2,16	2,16	2,16	_	_
fo	0,88	0,92	1,42	1,67	1,87	2,16	2,75	2,75	2,75	2,75	_	_
ΙZ	1,00	0,92	1,42	1,67	1,87	2,16	2,75	3,30	3,30	_	_	_
V _{R,k} [kN] for t _{N,I} [mm]	1,13	0,92	1,42	1,67	1,87	2,16	2,75	3,30	<u> </u>	_	_	_
>	1,25	0,92	1,42	1,67	1,87	2,16	2,75	<u> </u>	_	_	_	_
	1,50	0,92	1,42	1,67	1,87	_	_	<u> </u>	<u> </u>	_	_	_
	1,75	0,92	—	_	_	—	_	<u> </u>	<u> </u>	_	_	_
	0,40	0,42	0,62	0,72	0,81	0,81	0,81	0,81	0,81	0,81	0,81	0,81
	0,50	0,42	0,62	0,72	0,88	1,12	1,27	1,27	1,27	1,27	1,27	_
=	0,55	0,42	0,62	0,72	0,88	1,12	1,38	1,50	1,50	1,50	1,50	_
l <u>E</u>	0,63	0,42	0,62	0,72	0,88	1,12	1,38	1,50	1,50	1,50	1,50	_
享	0,75	0,42	0,62	0,72	0,88	1,12	1,38	1,50	1,50	1,50	_	_
ρ	0,88	0,42	0,62	0,72	0,88	1,12	1,38	1,50	1,50	1,50	_	_
ΙŹ	1,00	0,42	0,62	0,72	0,88	1,12	1,38	1,50	1,50	_	_	_
N _{R,k} [kN] for t _{N,I} [mm]	1,13	0,42	0,62	0,72	0,88	1,12	1,38	1,50	-	_	_	_
=	1,25	0,42	0,62	0,72	0,88	1,12	1,38	-	-	_	_	_
	1,50	0,42	0,62	0,72	0,88	_	_	_	_	_	_	-
	1,75	0,42	_	_	_	_	_	_	_	_	_	_

If both components I and II are made of S320GD or S350GD the values may be increased by 8,3%.


Self drilling screw

JT2-2H-4,8 x L

with undercut and hexagon head

Annex 8

Materials

Fastener: carbon steel

case hardened and galvanized

Washer: none

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

S280GD, S320GD or S350GD - EN 10346

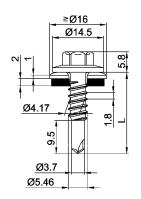
Drilling capacity $\Sigma t_i \le 2,20 \text{ mm}$

Timber substructures

no performance determined

t _{N,II}	[m m]	0,40	0,50	0,55	0,63	0,75	0,88	1,00	1,13	1,25	1,50	1,75
IV	$1_{\rm t,nom}$						_			•		
	0,40	0,69	0,69	0,69	0,69	0,69	0,69	0,69	0,69	0,69	0,69	0,69
	0,50	0,69	1,37	1,37	1,37	1,37	1,37	1,37	1,37	1,37	1,37	_
1=	0,55	0,69	1,37	1,70	1,70	1,70	1,70	1,70	1,70	1,70	1,70	_
ΙĒ	0,63	0,69	1,37	1,70	1,96	1,96	1,96	1,96	1,96	1,96	1,96	_
Ţ.	0,75	0,69	1,37	1,70	1,96	2,35	2,35	2,35	2,35	2,35	_	_
٠	0,88	0,69	1,37	1,70	1,96	2,35	2,70	2,70	2,70	2,70	_	_
12	1,00	0,69	1,37	1,70	1,96	2,35	2,70	3,02	3,02	_	_	_
V _{R,k} [kN] for t _{N,I} [mm]	1,13	0,69	1,37	1,70	1,96	2,35	2,70	3,02	<u> </u>	<u> </u>	_	_
>	1,25	0,69	1,37	1,70	1,96	2,35	2,70	<u> </u>	<u> </u>	—	_	_
	1,50	0,69	1,37	1,70	1,96	_	_	_	_	_	_	_
	1,75	0,69	—	_	_	—	_	<u> </u>	<u> </u>	_	_	_
	0,40	0,42	0,62	0,72	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85
	0,50	0,42	0,62	0,72	0,88	1,12	1,38	1,38	1,38	1,38	1,38	_
=	0,55	0,42	0,62	0,72	0,88	1,12	1,38	1,62	1,62	1,62	1,62	_
l <u>E</u>	0,63	0,42	0,62	0,72	0,88	1,12	1,38	1,62	1,62	1,62	1,62	_
享	0,75	0,42	0,62	0,72	0,88	1,12	1,38	1,62	1,62	1,62	_	_
ρ	0,88	0,42	0,62	0,72	0,88	1,12	1,38	1,62	1,62	1,62	_	_
ΙŹ	1,00	0,42	0,62	0,72	0,88	1,12	1,38	1,62	1,62	—	_	_
N _{R,k} [kN] for t _{N,I} [mm]	1,13	0,42	0,62	0,72	0,88	1,12	1,38	1,62	-	_	_	_
ž	1,25	0,42	0,62	0,72	0,88	1,12	1,38	—	—	_	—	_
	1,50	0,42	0,62	0,72	0,88	—	_	_	_	_	_	_
	1,75	0,42	_	_	_	_	_	_	_	_	_	_

If both components I and II are made of S320GD or S350GD the values may be increased by 8,3%.


Self drilling screw

JT2-T-2H-4,8 x L

with undercut and round head with Torx® drive system

Annex 9

Materials

Fastener: carbon steel

case hardened and galvanized

Washer: carbon steel, galvanized

stainless Steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

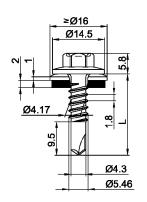
S280GD, S320GD or S350GD - EN 10346

Drilling capacity $\Sigma t_i \le 2,50 \text{ mm}$

Timber substructures

no performance determined

t _{N,II}	[m m]	0,6	3	0,7	75	0,8	88	1,0	0	1,1	3	1,2	25	1,5	50	2,0	00
N	$I_{t,nom}$								5 N	l m							
	0,50	-	_	_	_	_	_	_	_	-	_	—	_	_	_	_	_
	0,55	—	_	—	_	—	_	<u> </u>	_	—	_	_	_	—	_	—	_
1=	0,63	1,00	_	1,00	_	1,00	_	1,00	_	1,00	_	1,00	_	1,00	ac	_	_
Ξ	0,75	1,00	_	2,00	_	2,00	_	2,00	_	2,00	_	2,00	_	2,00	_	—	_
Ţ <u>z</u>	0,88	1,00	_	2,00	_	2,00	_	2,00	_	2,00	_	2,00	_	2,00	_	_	_
for	1,00	1,00	_	2,00	_	2,00	_	2,00	_	2,00	_	2,00	_	2,00	_	l —	_
ΙZ	1,13	1,00	_	2,00	_	2,00	_	2,00	_	2,00	_	2,00	_	l —	_	l —	_
V _{R,k} [kN] for t _{N,I} [mm]	1,25	1,00	_	2,00	_	2,00	_	2,00	_	2,00	_	2,00	_	l —	_	—	_
>	1,50	1,00	_	2,00	_	2,00	_	2,00	_	l —	_	l —	_	l —	_	l —	_
	1,75	1,00	_	2,00	_	l —	_	l —	_	l —	_	_	_	l —	_	l —	_
	2,00	l —	_	l —	_	—	_	_	_	l —	_	_	_	—	_	_	_
	0,50	0,38	_	0,49	_	0,59	_	0,70	_	0,86	_	0,97	_	1,24	ac	1,24	ac
	0,55	0,48	_	0,61	_	0,75	_	0,89	_	1,09	_	1,23	_	1,57	ac	—	_
1=	0,63	0,70	_	0,90	_	1,10	_	1,30	_	1,60	_	1,80	_	2,30	ac	—	_
ΙĒ	0,75	0,70	_	0,90	_	1,10	_	1,30	_	1,60	_	1,80	_	2,30	_	l —	_
Ţ.	0,88	0,70	_	0,90	_	1,10	_	1,30	_	1,60	_	1,80	_	2,30	_	—	_
for	1,00	0,70	_	0,90	_	1,10	_	1,30	_	1,60	_	1,80	_	2,30	_	l —	_
N _{R,k} [kN] for t _{N,I} [mm]	1,13	0,70		0,90		1,10		1,30		1,60	_	1,80	_	—	_	_	_
*	1,25	0,70	_	0,90	_	1,10	_	1,30	_	1,60	_	1,80	_	—	_	_	_
ž	1,50	0,70	_	0,90	_	1,10		1,30	_	_	_	l —	_	_	_	—	_
	1,75	0,70	_	0,90	_	—	_	—	_	—	_	—	_	—	_	—	_
	2,00	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_


Self drilling screw

JT2-2H-5,5 x L

with undercut, hexagon head and sealing washer \geq Ø16 mm

Annex 10

<u>Materials</u>

Fastener: carbon steel

case hardened and galvanized

Washer: carbon steel, galvanized

stainless Steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

S280GD, S320GD or S350GD - EN 10346

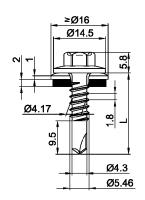
Drilling capacity

 $\Sigma t_i \leq 3{,}50~mm$

Timber substructures

no performance determined

t _{N,II}	[m m]	1,0	00	1,1	13	1,2	25	1,5	0	2,0	00	2,5	0	3,0	0	4,0	00
N	1 _{t,nom}							5 N	m							_	-
	0,50	I —	_	_	_	—	_	_	_	-	_	_	_	_	_	_	_
	0,55	—	_	l —	_	—	_	—	_	—	_	_	_	—	_	_	_
1-	0,63	1,40	_	1,50	_	1,60	ac	1,90	ac	2,30	ac	2,50	ac	l —	_	—	_
اقے	0,75	1,80	_	1,90	_	2,00	ac	2,20	ac	2,70	ac	3,20	а	l —	_	—	_
Ţ <u>z</u>	0,88	2,20	_	2,30	_	2,50	_	2,80	_	3,40	_	3,90	а	l —	_	—	_
ور	1,00	2,60	_	2,80	_	3,00	_	3,40	_	4,20	_	4,60	а	l —	_	—	_
ΙZ	1,13	3,00	_	3,10	_	3,20	_	4,00	_	4,60	_	_	_	l —	_	—	_
V _{R,k} [kN] for t _{N,I} [mm]	1,25	3,50	_	3,70	_	3,90	_	4,40	_	5,20	_	_	_	l —	_	—	_
> =	1,50	4,30	_	4,60	_	4,90	_	5,50	_	6,00	_	_	_	l —	_	—	_
	1,75	4,30	_	4,60	_	4,90	_	5,50	_	l —	_	_	_	l —	_	—	_
	2,00	4,30	_	4,60	_	4,90		5,50	_	l —	_	_	_	l —	_	_	_
	0,50	0,70	_	0,81	_	0,97	ac	1,24	ac	1,62	ac	1,62	ac	1,62	ac	_	_
	0,55	0,89	_	1,02	_	1,23	ac	1,57	ac	2,05	ac	2,05	ac	l —	_	—	_
1=	0,63	1,30	_	1,50	_	1,80	ac	2,30	ac	3,00	ac	3,00	ac	l —	_	—	_
١ <u>Ē</u>	0,75	1,30	_	1,50	_	1,80	ac	2,30	ac	3,40	ac	4,00	а	l —	_	—	_
<u>+</u>	0,88	1,30	_	1,50	_	1,80	_	2,30	_	3,40	_	4,60	а	l —	_	—	_
ξ	1,00	1,30	_	1,50	_	1,80	_	2,30	_	3,40	_	4,60	а	l —	_	_	_
ΙZ	1,13	1,30	_	1,50	_	1,80	_	2,30	_	3,40	_	_	_	l —	_	_	_
N _{R,k} [kN] for t _{N,I} [mm]	1,25	1,30		1,50		1,80		2,30	_	3,40		_	_	—	_	_	_
=	1,50	1,30	_	1,50	_	1,80	_	2,30	_	3,40	_	l —	_		_	_	_
	1,75	1,30	_	1,50	_	1,80	_	2,30	_	—	_	—	_	—	_	—	_
	2,00	1,30	_	1,50	_	1,80	_	2,30	_	_	_	_	_	_	_	_	_


Self drilling screw

JT2-3H-5,5 x L

with undercut, hexagon head and sealing washer \geq Ø16 mm

Annex 11

Materials

Fastener: carbon steel

case hardened and galvanized

Washer: carbon steel, galvanized

stainless Steel (1.4301) - EN 10088

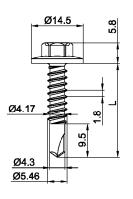
Component I: S280GD, S320GD or S350GD - EN 10346 Component II: S280GD, S320GD or S350GD - EN 10346

Drilling capacity $\Sigma t_i \le 3,50 \text{ mm}$

Timber substructures

no performance determined

t _{N,II}	[m m]	2 x 0	0,63	2 x 0	75,	2 x 0	,88	2 x 1	,00	2 x 1	,13	2 x 1	,25	2 x 1	,50	2 x ′	1,75
N	$I_{t,nom}$	_	-						5 N	İ m						_	_
	0,50	_	_	_	_	—	_	_	_	—	_	_	_	_	_	_	
	0,55	_	_	l —	_	—	_	—	_	—	_	_	_	l —	_	—	_
1=	0,63	_	_	1,60	_	1,60	_	1,60	_	1,60	_	1,60	_	l —	_	—	_
<u>E</u>	0,75	_	_	1,90	_	1,90	_	1,90	_	1,90	_	1,90	_	l —	_	—	_
<u>z</u> .	0,88	_	_	2,20	_	2,20	_	2,20	_	2,20	_	2,20	_	l —	_	—	_
Į.	1,00	_	_	2,60	_	2,60	_	2,60	_	2,60	_	2,60	_	l —	_	—	_
Z	1,13	_	_	2,60	_	2,60	_	2,60	_	2,60	_	_	_	l —	_	—	_
V _{R,k} [kN] for t _{N,I} [mm]	1,25	_	_	2,60	_	2,60	_	2,60	_	2,60	_	_	_	 	_	_	_
> =	1,50	_	_	2,60	_	2,60		2,60	_	l —	_	_	_	l —	_	_	_
	1,75	_	_	2,60	_	l —	_	_	_	l —	_	_	_	l —	_	_	_
	2,00	_	_	2,60	_		_	l —	_		_	_	_	_	_	_	_
	0,50	_	_	0,97	_	1,24	_	1,51	_	1,62	_	1,62	_	1,62	_	_	_
	0,55	_	_	1,23	_	1,57	_	1,91	_	2,05	_	2,05	_	l —	_	—	_
1=	0,63	_	_	1,80	_	2,30	_	2,80	_	3,00	_	3,00	_	l —	_	—	_
<u>E</u>	0,75	_	_	1,80	_	2,30	_	2,80	_	3,30	_	3,80	_	l —	_	_	_
<u>z</u> .	0,88	_	_	1,80	_	2,30	_	2,80	_	3,30	_	3,80	_	 	_	_	_
وَ	1,00	_	_	1,80	_	2,30	_	2,80	_	3,30	_	3,80	_	l —	_	_	_
N _{R,k} [kN] for t _{N,I} [mm]	1,13	_	_	1,80	_	2,30	_	2,80	_	3,30	_	_	_	l —	_	_	_
=	1,25	_	_	1,80	_	2,30	_	2,80	_	3,30	_	l —	_	_	_	_	_
ž	1,50	_	_	1,80	_	2,30	_	2,80	_	_	_	_	_	l —	_	_	_
	1,75	_	_	1,80	_	_	_	l —	_	—	_	_	_	_	_	_	_
	2,00	_	_	1,80	_	_	_	_	_	_	_	_	_	_	_	_	_


Self drilling screw

JT2-3H-5,5 x L

with undercut, hexagon head and sealing washer ≥ Ø16 mm

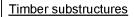
Annex 12

<u>Materials</u>

Fastener: carbon steel

case hardened and galvanized

Washer: none


Component I: S280GD, S320GD or S350GD - EN 10346

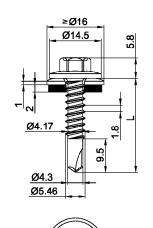
Component II: S235 - EN 10025-1

S280GD, S320GD or S350GD - EN 10346

Drilling capacity

 $\Sigma t_i \leq 3{,}50~mm$

no performance determined


t _{N,II}	[m m]	1,0	00	1,1	13	1,2	25	1,5	0	2,0	0	2,5	0	3,0	00	4,0	00
N	$I_{t,nom}$						7 N	l m							_	_	
	0,50	-	_	_	_	_	_	_	_	-	_	—	_	_	_	_	_
	0,55	—	_	—	_	—	_	—	_	—	_	—	_	_	_	—	_
Ī₽	0,63	1,80	_	1,80	_	2,00	_	2,30	_	2,80	ac	2,80	ac	_	_	—	_
<u> </u>	0,75	2,20	_	2,20	_	2,60	_	2,80	_	3,30	ac	3,70	а	_	_	—	_
Ţ <u>z</u>	0,88	2,60	_	2,60	_	3,00	_	3,30	_	3,60	_	4,30	а	_	_	—	_
for	1,00	3,00	_	3,00	_	3,40	_	3,80	_	4,40	_	4,90	а	_	_	—	_
ΙĘ	1,13	3,50	_	3,50	_	3,60	_	4,30	_	4,90	_	_	_	—	_	—	_
V _{R,k} [kN] for t _{N,I} [mm]	1,25	4,00	_	4,00	_	4,40	_	4,80	_	5,40	_	l —	_	_	_	—	_
>	1,50	4,80	_	4,80	_	5,40	_	5,80	_	6,40	_	l —	_	 	_	—	_
	1,75	4,80	_	4,80	_	5,40	_	5,80	_	l —	_	_	_	 	_	—	_
	2,00	4,80	_	4,80	_	5,40	_	5,80	_	—	_	—	_	_	_	—	_
	0,50	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_
	0,55	l —	_	l —	_	—	_	—	_	—	_	_	_	 	_	—	_
<u>=</u>	0,63	1,30	_	1,30	_	1,80	_	2,10	_	2,10	ac	2,10	ac	_	_	—	_
<u>E</u>	0,75	1,30	_	1,30	_	1,80	_	2,30	_	2,90	ac	2,90	а	_	_	—	_
± <u>₹</u>	0,88	1,30	_	1,30	_	1,80	_	2,30	_	3,40	_	3,80	а	_	_	—	_
for	1,00	1,30	_	1,30	_	1,80	_	2,30	_	3,40	_	4,60	а	_	_	—	_
ΙZ	1,13	1,30	_	1,30	_	1,80	_	2,30	_	3,40	_	_	_	_	_	—	_
N _{R,k} [kN] for t _{N,I} [mm]	1,25	1,30	_	1,30	_	1,80	_	2,30	_	3,40	_	—	_	_	_	—	_
=	1,50	1,30	_	1,30	_	1,80	_	2,30	_	3,40	_	—	_	—	_	—	_
	1,75	1,30	_	1,30	_	1,80	_	2,30	_	—	_	l —	_	—	_	—	_
	2,00	1,30	_	1,30	_	1,80	_	2,30	_	_	_	_	_	_	_	_	_

Self drilling screw

JT2-3-5,5 x L with hexagon head

Annex 13

<u>Materials</u>

Fastener: carbon steel

case hardened and galvanized

Washer: carbon steel, galvanized

stainless Steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

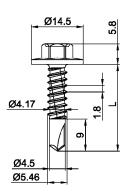
S280GD, S320GD or S350GD - EN 10346

Drilling capacity $\Sigma t_i \le 3,50 \text{ mm}$

Timber substructures

no performance determined

t _{N,II}	[m m]	1,0	0	1,1	13	1,2	25	1,5	0	2,0	0	2,5	0	3,0	0	4,0	00
N	$I_{t,nom}$							7 N	m							-	_
	0,50	-	_	_	_	_	_	_	_	-	_	—	_	_	_	_	
	0,55	—	_	—	_	—	_	<u> </u>	_	—	_	_	_	—	_	—	_
1=	0,63	1,40	_	1,40	_	1,70	_	2,00	_	2,50	ac	2,70	ac	l —	_	_	_
<u> </u>	0,75	1,80	_	1,80	_	2,20	_	2,40	_	3,00	ac	3,50	а	—	_	—	_
Ţ <u>z</u>	0,88	2,20	_	2,20	_	2,60	_	2,90	_	3,40	_	4,10	а	—	_	_	_
for	1,00	2,60	_	2,60	_	3,00	_	3,40	_	4,20	_	4,60	а	l —	_	—	_
Ξ	1,13	3,00	_	3,00	_	3,20	_	4,00	_	4,60	_	_	_	l —	_	—	_
V _{R,k} [kN] for t _{N,I} [mm]	1,25	3,50	_	3,50	_	3,90	_	4,40	_	5,20	_	l —	_	l —	_	—	_
>	1,50	4,30	_	4,30	_	4,90	_	5,50	_	6,00	_	l —	_	l —	_	—	_
	1,75	4,30	_	4,30	_	4,90	_	5,50	_	l —	_	_	_	l —	_	—	_
	2,00	4,30	_	4,30	_	4,90		5,50	_	l —	_	_	_	—	_	_	_
	0,50	0,70	_	0,70	_	0,97	_	1,24	_	1,62	ac	1,62	ac	1,62	ac	_	_
	0,55	0,89	_	0,89	_	1,23	_	1,57	_	2,05	ac	2,05	ac	—	_	_	_
1=	0,63	1,30	_	1,30	_	1,80	_	2,30	_	3,00	ac	3,00	ac	l —	_	—	_
ΙĒ	0,75	1,30	_	1,30	_	1,80	_	2,30	_	3,40	ac	4,20	а	l —	_	—	_
Ţ	0,88	1,30	_	1,30	_	1,80	_	2,30	_	3,40	_	4,60	а	—	_	—	_
for	1,00	1,30	_	1,30	_	1,80	_	2,30		3,40	_	4,60	а	—	_	_	_
ΙΞ	1,13	1,30		1,30	_	1,80		2,30		3,40		—	_	—	_	_	_
N _{R,k} [kN] for t _{N,I} [mm]	1,25	1,30		1,30	_	1,80		2,30		3,40	_	_	_		_	_	_
ž	1,50	1,30	_	1,30	_	1,80	_	2,30	_	3,40	_	l —	_	_	_	_	_
	1,75	1,30	_	1,30	_	1,80	_	2,30	_	—	_	—	_	—	_	—	_
	2,00	1,30	_	1,30	_	1,80		2,30	_	_		_	_	_	_	_	_


Self drilling screw

JT2-3-5,5 x L

with hexagon head and sealing washer ≥ Ø16 mm

Annex 14

<u>Materials</u>

Fastener: carbon steel

case hardened and galvanized

Washer: none

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235, S275 or S355 - EN 10025-1

S280GD, S320GD or S350GD - EN 10346

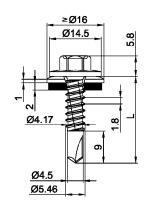
Drilling capacity

 $\Sigma t_i \le 6,00 \text{ mm}$

Timber substructures

no performance determined

t _{N,II}	[m m]	_	_	_	_	1,5	0	2,0	0	2,5	0	3,	00	4,	00	5,	00
N	$I_{t,nom}$										7 N	l m					
	0,50	_	_	_	_		_	_	_	—	_	_	_	_	_	_	_
	0,55	—	_	_	_	—	_	—	_	—	_	—	_	_		—	_
1=	0,63	—	_	_	_	2,60	ac	2,80	ac	2,80	ac	2,80	abcd	3,80	abcd	3,80	abcd
1 🗏	0,75	—	_	_	_	3,00	_	3,50	ac	3,50	ac	3,50	ac	4,60	ac	4,60	ac
ž	0,88	_	_	_	_	3,40	_	4,20	_	4,20	ac	4,20	ac	5,30	ac	5,30	ac
for	1,00	—	_	_	_	3,80	_	4,50	_	4,50	ac	4,50	ac	6,00	ac	6,00	ac
ΙĘ	1,13	—	_	_	_	4,20	_	4,90	_	4,90	_	4,90	ac	6,70	ac	—	_
V _{R,k} [kN] for t _{N,I} [mm]	1,25	—	_	_	_	4,60	_	5,30	_	5,30	_	5,30	ac	7,30	ac	—	_
>	1,50	—	_	_	_	5,30	_	6,00	_	6,00	_	6,00	_	8,10	_	—	_
	1,75	_	_	_	_	5,30	_	6,00	_	6,00	_	6,00	_	8,10	_	—	_
	2,00	_	_	_	_	5,30	_	6,00	_	6,00	_	6,00	_	8,10	_	_	_
	0,50	_	_	_	_	-	_	—	_	-	_	_	_	_	_	_	_
	0,55	—	_	_	_	—	_	—	_	—	_	—	_	_	_	—	— I
=	0,63	_	_	_	_	1,60	ac	2,20	ac	2,20	ac	2,20	abcd	2,20	abcd	2,20	abcd
<u> </u>	0,75	—	_	_	_	1,60		2,50	ac	2,90	ac	2,90	ac	2,90	ac	2,90	ac
立	0,88	—	_	_	_	1,60	_	2,50	_	3,60	ac	3,60	ac	3,80	ac	3,80	ac
for	1,00	—	_	_	_	1,60	_	2,50	_	3,60	ac	4,70	ac	4,70	ac	4,70	ac
Ξ	1,13	—	_	_	_	1,60	_	2,50	_	3,60	_	4,80	ac	5,70	ac	—	_
N _{R,k} [kN] for t _{N,I} [mm]	1,25	—	_	_	_	1,60	_	2,50	_	3,60	_	4,80	ac	6,80	ac	—	_
ľź	1,50	—	_	_	_	1,60	_	2,50	_	3,60	_	4,80	_	6,80	_	—	_
	1,75	—	_	_	_	1,60	_	2,50	_	3,60	_	4,80	_	6,80	_	—	_
	2,00		_	_		1,60		2,50		3,60		4,80		6,80			


Self drilling screw

JT2-6-5,5 x L with hexagon head

Annex 15

Z56762.13

<u>Materials</u>

Fastener: carbon steel

case hardened and galvanized

Washer: carbon steel, galvanized

stainless Steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235, S275 or S355 - EN 10025-1

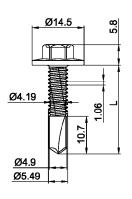
S280GD, S320GD or S350GD - EN 10346

Drilling capacity $\Sigma t_i \le 6,00 \text{ mm}$

Timber substructures

no performance determined

t _{N,II}	[m m]	_	_	_	_	1,5	0	2,0	00	2,5	0	3,	00	4,	00	5,	00
N	$I_{t,nom}$										7 N	l m					
	0,50	_	_	_	_	-	_	-	_	—	_		_	_	_	_	_
	0,55	_	_	_	_	—	_	—	_	—	_	 —	_	_		—	_
1=	0,63	_	_	_	_	2,40	ac	2,50	ac	2,50	ac	2,50	abcd	3,40	abcd	3,40	abcd
1 🖺	0,75	_	_	_	_	2,70	_	3,10	ac	3,10	ac	3,10	ac	4,00	ac	4,00	ac
<u> </u>	0,88	_	_	_	_	3,10	_	3,80	_	3,80	ac	3,80	ac	4,80	ac	4,80	ac
Į.	1,00	_	_	_	_	3,40	_	4,00	_	4,00	ac	4,00	ac	5,30	ac	5,30	ac
Z	1,13	_	_	_	_	3,80	_	4,40	_	4,40	_	4,40	_	6,00	ac	—	_
V _{R,k} [kN] for t _{N,I} [mm]	1,25	_	_	_	_	4,10	_	4,80	_	4,80	_	4,80	_	6,60	ac	—	_
> =	1,50	_	_	_	_	5,00		5,40	_	5,40	_	5,40	_	7,30	_	—	_
	1,75	_	_	_	_	5,00	_	5,40	_	5,40	_	5,40	_	7,30	_	—	_
	2,00	_	_	_	_	5,00	_	5,40	_	5,40	_	5,40	_	7,30	_	—	_
	0,50	_	_	_	_	0,86	ac	1,35	ac	1,62	ac	1,62	abcd	1,62	abcd	1,62	abcd
	0,55	_	_	_	_	1,09	ac	1,71	ac	2,05	ac	2,05	abcd	2,05	abcd	2,05	abcd
	0,63	_	_	_	_	1,60	ac	2,50	ac	3,00	ac	3,00	abcd	3,00	abcd	3,00	abcd
直	0,75	_	_	_	_	1,60	_	2,50	ac	3,60	ac	4,10	ac	4,10	ac	4,10	ac
Ţ <u>z</u>	0,88	_	_	_	_	1,60	_	2,50	_	3,60	ac	4,70	ac	5,00	ac	5,00	ac
for	1,00	_	_	_	_	1,60	_	2,50	_	3,60	ac	4,70	ac	5,80	ac	5,80	ac
ΙZ	1,13	_	_	_	_	1,60		2,50	_	3,60	_	4,70	_	5,80	ac	—	_
N _{R,k} [kN] for t _{N,I} [mm]	1,25	_	_	_	_	1,60	_	2,50	_	3,60	_	4,70	_	5,80	ac	—	_
=	1,50	_	_	_	_	1,60		2,50		3,60	_	4,70	_	5,80	_	—	_
	1,75	_	_	_	_	1,60	_	2,50	_	3,60	_	4,70	_	5,80	_	—	_
	2,00	_	_	_	_	1,60	_	2,50	_	3,60	_	4,70	_	5,80	_	—	-


Self drilling screw

JT2-6-5,5 x L

with hexagon head and sealing washer \geq Ø16 mm

Annex 16

<u>Materials</u>

Fastener: carbon steel

case hardened and galvanized

Washer: none

Component I: S280GD, S320GD or S350GD - EN 10346

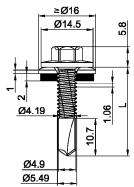
Component II: S235, S275 or S355 - EN 10025-1

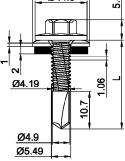
Drilling capacity

 $\Sigma t_i \leq 9,50 \text{ mm}$

Timber substructures

no performance determined


t _{N,II}	[m m]	4,	00	5,0	00	6,0	0	8,0	00	10	,0	12	,0	13	,0	14	,0
N	/I _{t,nom}				7 N	l m							_	-			
	0,50	-	_	_	_	-	_	_	_	_	_	_	_	_	_	_	
	0,55	—		 —	_	—	_	 —	_	_	_	—	_	_	_	_	_
1=	0,63	3,80	abcd	3,80	ac	3,80	ac	3,80	ac	_	_	_	_	_	_	—	_
اق ا	0,75	4,60	ac	4,60	ac	4,60	ac	4,60	ac	_	_	—	_	_	_	—	_
Ţ <u>z</u>	0,88	5,30	ac	5,30	ac	5,30	ac	5,30	а	_	_	_	_	_	_	—	_
ρ	1,00	6,00	ac	6,00	ac	6,00	ac	6,00	а	_	_	_	_	_	_	—	_
ΙZ	1,13	6,70	ac	6,70	ac	6,70	ac	6,70	а	_	_	_	_	_	_	—	_
V _{R,k} [kN] for t _{N,I} [mm]	1,25	7,30	ac	7,30	ac	7,30	ac	7,30	_	_	_	_	_	_	_	—	_
>	1,50	8,10	_	8,10	_	8,10	_	8,10	_	_	_	_	_	_	_	—	_
	1,75	8,10	_	8,10	_	8,10	_	l —	_	_	_	_	_	_	_	—	_
	2,00	8,10	_	8,10	_	8,10	_	—	_	_	_	_	_	_	_	—	_
	0,50	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_
	0,55	—	_	_	_	—	_	—	_	_	_	_	_	_	_	_	_
╛	0,63	2,20	abcd	2,20	ac	2,20	ac	2,20	ac	_	_	—	_	_	_	-	_
<u>E</u>	0,75	2,90	ac	2,90	ac	2,90	ac	2,90	ac	_	_	_	_	_	_	 	_
Ţ	0,88	3,80	ac	3,80	ac	3,80	ac	3,80	а	_	_	_	_	_	_	—	_
for	1,00	4,70	ac	4,70	ac	4,70	ac	4,70	а	_	_	—	_	_	_	—	_
N _{R,k} [kN] for t _{N,I} [mm]	1,13	5,70	ac	5,70	ac	5,70	ac	5,70	а	_	_	_	_	_	_	_	_
*	1,25	5,80	ac	6,30	ac	6,80	ac	6,80	_	_	_	—	_	_	_	—	_
=	1,50	5,80	_	6,30		6,80	_	6,80	_	_	_	—	_	_	_	_	_
	1,75	5,80	_	6,30	_	6,80	_	—	_	_	_	—	_	_	_	—	_
	2,00	5,80	_	6,30	_	6,80	_	_	_	_	_	_	_	_	_	_	_


Self drilling screw

JT2-8-5,5 x L with hexagon head

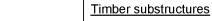
Annex 17

<u>Materials</u>

Fastener: carbon steel

case hardened and galvanized

Washer: carbon steel, galvanized


stainless Steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235, S275 or S355 - EN 10025-1

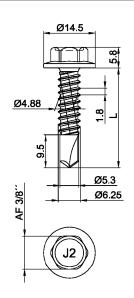
Drilling capacity

 $\Sigma t_i \le 9,50 \text{ mm}$

no performance determined

t _{N,I}	[m m]	4,	00	5,	00	6,	00	8,	00	10	,0	12	.,0	13	13,0		,0
	√I _{t,nom}				7 N	lm							_	_			
	0,50	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
	0,55	—		_	_	—		_	_	_	_	—	_	_	_	_	_
1=	0,63	3,00	abcd	3,00	abcd	3,00	abcd	3,00	abcd	_	_	_	_	_	_	_	_
<u>E</u>	0,75	3,70	ac	3,70	ac	3,70	ac	3,70	ac	_	_	_	_	_	_	—	_
Ţ.	0,88	4,20	ac	4,20	ac	4,20	ac	4,20	а	_	_	—	_	_	_	_	_
for	1,00	4,80	ac	4,80	ac	4,80	ac	4,80	а	_	_	_	_	_	_	—	_
12	1,13	5,40	ac	5,40	ac	5,40	ac	5,40	а	_	_	_	_	_	_	—	_
V _{R,k} [kN] for t _{N,I} [mm]	1,25	5,80	ac	5,80	ac	5,80	ac	5,80	а	_	_	—	_	_	_	—	_
"	1,50	6,70	_	6,70	_	6,70	_	6,70	_	_	_	_	_	_	_	 	_
	1,75	6,70	_	6,70	_	6,70	_	_	_	_	_	_	_	_	_	—	_
	2,00	6,70	_	6,70	_	6,70	_	_	_	_	_	_	_	_	_	—	_
	0,50	1,73	abcd	1,73	abcd	1,73	abcd	1,73	abcd	_		_	_	_	_	_	_
	0,55	2,18	abcd	2,18	abcd	2,18	abcd	2,18	abcd	_	_	—	_	_	_	—	_
╛	0,63	3,20	abcd	3,20	abcd	3,20	abcd	3,20	abcd	_	_	—	_	_	_	-	_
<u>E</u>	0,75	4,10	ac	4,10	ac	4,10	ac	4,10	ac	_	_	_	_	_	_	 	_
Ţ.	0,88	5,00	ac	5,00	ac	5,00	ac	5,00	а	_	_	_	_	_	_	—	_
Į.	1,00	5,80	ac	5,80	ac	5,80	ac	5,80	а	_	_	_	_	_	_	—	_
ΙZ	1,13	5,80	ac	6,80	ac	6,80	ac	6,80	а	_	_	_	_	_	_	_	_
N _{R,k} [kN] for t _{N,I} [mm]	1,25	5,80	ac	6,80	ac	7,60	ac	7,60	а	_	_	—	_	_	_	—	_
=	1,50	5,80	_	6,80	_	9,30	_	9,30	_	_	_	—	_	_	_	—	_
	1,75	5,80	_	6,80	_	9,30	_	_	_	_	_	_	_	_	_	—	_
	2,00	5,80	_	6,80	_	9,30	_	_	_	_	_	_	_	_	_	_	_

Self drilling screw


JT2-8-5,5 x L

with hexagon head and sealing washer ≥ Ø16 mm

Annex 18

Z56762.13

Materials

Fastener: carbon steel

case hardened and galvanized

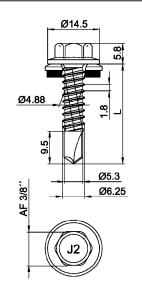
Washer: none

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235, S275 or S355 - EN 10025-1

S280GD, S320GD or S350GD - EN 10346

Drilling capacity $\Sigma t_i \le 6,50 \text{ mm}$


Timber substructures

no performance determined

t _{N,II}	[m m]	1,5	50	2,	00	2,	50	3,	00	4,	00	5,0	00	6,0	00	7,0	00
N	∕I _{t,nom}	_	-					7 1	l m					_			
	0,50	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_]
	0,55	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—	_
1=	0,63	_	_	2,40	abcd	2,40	abcd	2,40	abcd	2,40	abcd	2,40	ac	_	_	—	-
<u>E</u>	0,75	_	_	2,90	ac	3,10	ac	3,10	ac	3,10	ac	3,10	ac	_	_	—	-
Ţ.	0,88	_	_	3,50	ac	3,80	ac	3,80	ac	3,80	ac	3,80	а	_	_	—	-
for	1,00	_	_	4,00	ac	4,60	ac	4,60	ac	4,60	ac	4,60	а	_	_	—	-
2	1,13	_	_	4,60	ac	5,20	ac	5,20	ac	5,20	ac	5,20	а	_	_	—	_
V _{R,k} [kN] for t _{N,I} [mm]	1,25	_	_	5,20	_	5,80	ac	5,80	ac	5,80	ac	5,80	а	—	_	—	_
>	1,50	_	_	6,40	_	7,20	_	7,20	_	7,20	_	7,20	_	 	_	—	_
	1,75	_	_	6,40	_	7,20	_	7,20	_	7,20	_	_	_	 	_	—	_
	2,00	_	_	6,40	_	7,20	_	7,20	_	7,20	_	_	_	_	_	—	-
	0,50	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	0,55	_	_	_	_	_	_	_	_	_	_	_	_	 	_	—	-
1=	0,63	_	_	2,10	abcd	2,10	abcd	2,10	abcd	2,10	abcd	2,10	ac	_	_	—	-
<u>E</u>	0,75	_	_	2,80	ac	2,80	ac	2,80	ac	2,80	ac	2,80	ac	_	_	—	-
Ţ.	0,88	_	_	3,40	ac	3,60	ac	3,60	ac	3,60	ac	3,60	а	_	_	—	-
fo	1,00	_	_	3,40	ac	4,30	ac	4,30	ac	4,30	ac	4,30	а	_	_	—	_
N _{R,k} [kN] for t _{N,1} [mm]	1,13	_	_	3,40	ac	4,70	ac	5,50	ac	5,50	ac	5,50	а	—	_	—	_
×	1,25	 	_	3,40	_	4,70	ac	6,20	ac	6,60	ac	6,60	а	—	_	—	_
±	1,50	_	_	3,40	_	4,70	_	6,20	_	8,70	_	8,70	_	—	_	—	_
	1,75	_	_	3,40	_	4,70	_	6,20	_	8,70	_	_	_	—	_	—	_
	2,00	_	_	3,40	_	4,70	_	6,20	_	8,70	_	_	_	_	_	_	_

Self drilling screw	
JT2-6-6,3 x L with hexagon head	Annex 19

Materials

Fastener: carbon steel

case hardened and galvanized

Washer: carbon steel, galvanized

stainless Steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235, S275 or S355 - EN 10025-1

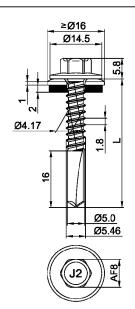
S280GD, S320GD or S350GD - EN 10346

Drilling capacity $\Sigma t_i \le 6,50 \text{ mm}$

Timber substructures

no performance determined

t _{N,II}	[m m]	1,5	50	2,	00	2,	50	3,	00	4,	00	5,0	0	6,0	0	7,0	00
N	∕I _{t,nom}	_	-				7 Nm									_	-
	0,50	_	_	_	_	_		_	_	_	_	_	_	_	_	_	$\neg \neg$
	0,55	—	_	—	_	_	_	_	_	_	_	_	_	l —	_	_	_
1=	0,63	—	_	2,40	abcd	2,40	abcd	2,40	abcd	2,40	abcd	2,40	ac	l —	_	—	_
۱ <u>E</u>	0,75	—	_	2,90	ac	3,10	ac	3,10	ac	3,10	ac	3,10	ac	l —	_	—	_
Ţ.	0,88	_	_	3,50	ac	3,80	ac	3,80	ac	3,80	ac	3,80	a	l —	_	—	_
for	1,00	_	_	4,00	ac	4,60	ac	4,60	ac	4,60	ac	4,60	а	l —	_	—	_
12	1,13	—	_	4,60	ac	5,20	ac	5,20	ac	5,20	ac	5,20	а	l —	_	_	_
V _{R,k} [kN] for t _{N,I} [mm]	1,25	—	_	5,20	_	5,80	ac	5,80	ac	5,80	ac	5,80	a	—	_	—	_
>	1,50	—	_	6,40	_	7,20	_	7,20	_	7,20	_	7,20	а	l —	_	—	_
	1,75	_	_	6,40	_	7,20	_	7,20	_	7,20	_	_	_	l —	_	—	_
	2,00	—	_	6,40	_	7,20	_	7,20	_	7,20	_	_	_	l —	_	—	_
	0,50	_	_	1,13	abcd	1,13	abcd	1,13	abcd	1,13	abcd	1,13	ac	1,13	ac	_	_
	0,55	_	_	1,43	abcd	1,43	abcd	1,43	abcd	1,43	abcd	1,43	ac	—	_	_	_
=	0,63	—	_	2,10	abcd	2,10	abcd	2,10	abcd	2,10	abcd	2,10	ac	l —	_	-	_
<u> </u>	0,75	_	_	2,80	ac	2,80	ac	2,80	ac	2,80	ac	2,80	ac	l —	_	 	_
Ť.	0,88	—	_	3,40	ac	3,60	ac	3,60	ac	3,60	ac	3,60	а	l —	_	—	_
for	1,00	—	_	3,40	ac	4,30	ac	4,30	ac	4,30	ac	4,30	а	l —	_	—	_
ΙΞ	1,13	—	_	3,40	ac	4,70	ac	5,50	ac	5,50	ac	5,50	а	l —	_	—	_
N _{R,k} [kN] for t _{N,1} [mm]	1,25	—	_	3,40	_	4,70	ac	6,20	ac	6,60	ac	6,60	а	—	_	—	_
±	1,50	—	_	3,40	_	4,70	_	6,20	_	8,70	_	8,70	а	—	_	—	_
	1,75	—	_	3,40	_	4,70	_	6,20	_	8,70	_	_	_	—	_	_	_
	2,00	_	_	3,40	_	4,70	_	6,20	_	8,70	_	_	_	_	_	_	_


Self drilling screw

JT2-6-6,3 x L

with hexagon head and sealing washer \geq Ø16 mm

Annex 20

Materials

Fastener: carbon steel

case hardened and galvanized

Washer: carbon steel, galvanized

stainless Steel (1.4301) - EN 10088

Component I: S280GD - EN 10346

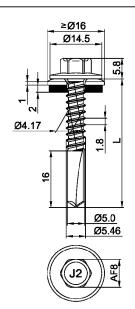
Component II: S235, S275 or S355 - EN 10025-1

Drilling capacity $\Sigma t_i \le 13,00 \text{ mm}$

Timber substructures

no performance determined

t _{N,II}		4,0	00	5,0	0	6,0	00	8,0	0	10	,0	12	,0	13	,0	14	,0
IV	$I_{t,nom}$						7 N	l m							_		
	0,50	-	_	_	_	_	_	_	_	_	_	—	_	_	_	_	
	0,55	—	_	—	_	—	_	—	_	—	_	—	_	_	_	_	_
ן ב	0,63	2,20	ac	2,20	ac	2,20	ac	2,20	ac	2,20	ac	2,20	ac	_	_	_	_
<u> </u>	0,75	2,80	ac	2,80	ac	2,80	ac	2,80	ac	2,80	ac	2,80	ac	_	_	_	_
± <u>₹</u>	0,88	3,50	ac	3,50	ac	3,50	ac	3,50	ac	3,50	ac	3,50	а	_	_	_	_
for	1,00	4,20	_	4,20	ac	4,20	ac	4,20	ac	4,20	ac	4,20	а	_	_	_	_
ΙZ	1,13	4,20	_	4,90	_	4,90	_	4,90	_	4,90	_	_	_	_	_	_	_
V _{R.k} [kN] for t _{N,I} [mm]	1,25	4,20	_	5,60	_	5,60	_	5,60	_	5,60	_	_	_	_	_	_	_
5	1,50	4,20	_	6,40	_	7,20	_	7,20	_	7,20	_	l —	_	_	_	_	_
	1,75	4,20	_	6,40	_	7,20	_	7,20	_	7,20	_	l —	_	_	_	_	_
	2,00	4,20	_	6,40	_	7,20	_	7,20	_	7,20	_	l —	_	—	_	_	_
	0,50	1,30	ac	1,30	ac	1,30	ac	1,30	ac	1,30	ac	1,30	ac	_	_	_	_
	0,55	1,64	ac	1,64	ac	1,64	ac	1,64	ac	1,64	ac	1,64	ac	_	_	_	_
1=	0,63	2,40	ac	2,40	ac	2,40	ac	2,40	ac	2,40	ac	2,40	ac	_	_	_	_
<u> </u>	0,75	3,10	ac	3,10	ac	3,10	ac	3,10	ac	3,10	ac	3,10	ac	_	_	_	_
Ţ.	0,88	3,90	ac	3,90	ac	3,90	ac	3,90	ac	3,90	ac	3,90	а	_	_	_	_
for	1,00	4,70	_	4,70	ac	4,70	ac	4,70	ac	4,70	ac	4,70	а	—	_	_	_
N _{R,k} [kN] for t _{N,I} [mm]	1,13	4,70	_	5,60	_	5,60		5,60	_	5,60	_	_	_	_	_	_	_
*	1,25	4,70	_	6,40	_	6,40	_	6,40	_	6,40	_	—	_	—	_	_	_
ž	1,50	4,70		6,40	_	6,40		6,40	_	6,40	_	—	_	—	_	_	_
	1,75	4,70	_	6,40	_	6,40	_	6,40	_	6,40	_	l —	_	—	_	_	_
	2,00	4,70	_	6,40	_	6,40	_	6,40	_	6,40	_	_	_	_	_	_	_


Self drilling screw

JT2-12-5,5 x L

with hexagon head and sealing washer ≥ Ø16 mm

Annex 21

Materials

Fastener: carbon steel

case hardened and galvanized

Washer: carbon steel, galvanized

stainless Steel (1.4301) - EN 10088

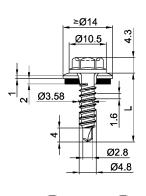
Component I: S320GD or S350GD - EN 10346 Component II: S235, S275 or S355 - EN 10025-1

Drilling capacity $\Sigma t_i \le 13,00 \text{ mm}$

Timber substructures

no performance determined

t _{N,II}	[m m]	4,0	00	5,0	0	6,0	00	8,0	0	10	,0	12	,0	13	,0	14	,0
N	/I _{t,nom}						7 N	l m						_		_	-
	0,50	_	_	_	_	-	_	_	_	-	_	_	_	_	_	_	_
	0,55	 —	_	—	_	—	_	—	_	—	_	_	_	_	_	_	_
1=	0,63	2,50	ac	2,50	ac	2,50	ac	2,50	ac	2,50	ac	2,50	ac	_	_	—	-
اق ا	0,75	3,20	ac	3,20	ac	3,20	ac	3,20	ac	3,20	ac	3,20	ac	_	_	—	-
Ţ <u>z</u>	0,88	3,90	ac	3,90	ac	3,90	ac	3,90	ac	3,90	ac	3,90	а	_	_	—	-
٦	1,00	4,20	_	4,60	ac	4,60	ac	4,60	ac	4,60	ac	4,60	а	_	_	—	_
ΙZ	1,13	4,20	_	5,30	_	5,30	_	5,30	_	5,30	_	_	_	_	_	—	_
V _{R,k} [kN] for t _{N,I} [mm]	1,25	4,20	_	6,00	_	6,00	_	6,00	_	6,00	_	_	_	_	_	—	_
> =	1,50	4,20	_	6,40	_	7,20	_	7,60	_	7,60	_	_	_	 	_	—	_
	1,75	4,20	_	6,40	_	7,20	_	7,60	_	7,60	_	_	_	 	_	—	_
	2,00	4,20	_	6,40	_	7,20		7,60	_	7,60	_	_	_	_	_	_	_
	0,50	1,40	ac	1,40	ac	1,40	ac	1,40	ac	1,40	ac	1,40	ac	_	_	_	_
	0,55	1,77	ac	1,77	ac	1,77	ac	1,77	ac	1,77	ac	1,77	ac	_	_	_	-
1=	0,63	2,60	ac	2,60	ac	2,60	ac	2,60	ac	2,60	ac	2,60	ac	_	_	—	_
ΙĒ	0,75	3,30	ac	3,30	ac	3,30	ac	3,30	ac	3,30	ac	3,30	ac	—	_	—	_
Ţ	0,88	4,20	ac	4,20	ac	4,20	ac	4,20	ac	4,20	ac	4,20	а	_	_	—	_
for	1,00	4,70	_	5,00	ac	5,00	ac	5,00	ac	5,00	ac	5,00	а	—	_	—	_
ΙZ	1,13	4,70	_	6,00	_	6,00	_	6,00	_	6,00	_	_	_	_	_	_	_
N _{R,k} [kN] for t _{N,I} [mm]	1,25	4,70		6,90	_	6,90		6,90	_	6,90	_	_	_	_	_	_	_
ž	1,50	4,70	_	6,90	_	6,90	_	6,90	_	6,90	_	l —	_	_	_	_	_
	1,75	4,70	_	6,90	_	6,90	_	6,90	_	6,90	_	—	_	_	_	—	_
	2,00	4,70	_	6,90	_	6,90	_	6,90	_	6,90	_	_	_	_	_	_	_


Self drilling screw

JT2-12-5,5 x L

with hexagon head and sealing washer \geq Ø16 mm

Annex 22

Materials

Fastener: stainless steel (1.4301) - EN 10088,

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

S280GD, S320GD or S350GD - EN 10346

Drilling capacity Σ

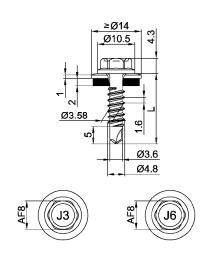
 $\Sigma t_i \leq 2{,}20~mm$

Timber substructures

no performance determined

t _{N,II}	[m m]	0,40	0,50	0,55	0,63	0,75	0,88	1,00	1,13	1,25	1,50	1,75
IN,	l _{t,nom}	,	<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>		,	,
	0,40	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55
	0,50	0,55	0,89	0,89	0,89	0,89	0,89	0,89	0,89	0,89	0,89	_
=	0,55	0,55	0,89	1,06	1,06	1,06	1,06	1,06	1,06	1,06	1,06	_
<u> </u>	0,63	0,55	0,89	1,06	1,28	1,28	1,28	1,28	1,28	1,28	1,28	_
<u>z</u>	0,75	0,55	0,89	1,06	1,28	1,61	1,61	1,61	1,61	1,61	_	_
for	0,88	0,55	0,89	1,06	1,28	1,61	1,86	1,86	1,86	1,86	_	_
ΙZ	1,00	0,55	0,89	1,06	1,28	1,61	1,86	2,09	2,09	_	_	_
V _{R,k} [kN] for t _{N,I} [mm]	1,13	0,55	0,89	1,06	1,28	1,61	1,86	2,09	_	<u> </u>	_	_
5	1,25	0,55	0,89	1,06	1,28	1,61	1,86	_	_	<u> </u>	_	
	1,50	0,55	0,89	1,06	1,28	_	_	_	_	<u> </u>	_	_
	1,75	0,55	—	—	_	_	_	_	_	<u> </u>	_	_
	0,40	0,42	0,62	0,72	0,88	0,97	0,97	0,97	0,97	0,97	0,97	0,97
	0,50	0,42	0,62	0,72	0,88	1,12	1,38	1,39	1,39	1,39	1,39	_
=	0,55	0,42	0,62	0,72	0,88	1,12	1,38	1,60	1,60	1,60	1,60	_
<u> Ē</u>	0,63	0,42	0,62	0,72	0,88	1,12	1,38	1,60	1,60	1,60	1,60	_
<u>\$</u>	0,75	0,42	0,62	0,72	0,88	1,12	1,38	1,60	1,60	1,60	_	
fo	0,88	0,42	0,62	0,72	0,88	1,12	1,38	1,60	1,60	1,60	_	_
ĺŜ	1,00	0,42	0,62	0,72	0,88	1,12	1,38	1,60	1,60	<u> </u>	_	_
N _{R,k} [kN] for t _{N,I} [mm]	1,13	0,42	0,62	0,72	0,88	1,12	1,38	1,60	_	—	_	
=	1,25	0,42	0,62	0,72	0,88	1,12	1,38	_	_	—	_	_
	1,50	0,42	0,62	0,72	0,88	_	_	_	_	_	_	_
	1,75	0,42	_	_	_	_	_	_	_	_	_	_

If both components I and II are made of S320GD or S350GD the values may be increased by 8,3%.


Self drilling screw

JT3-2H-4,8 x L JT6-2H-4,8 x L

with undercut and hexagon head and sealing washer ≥ Ø14 mm

Annex 23

Materials

Fastener: stainless steel (1.4301) - EN 10088,

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

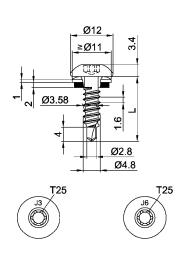
S280GD, S320GD or S350GD - EN 10346

Drilling capacity $\Sigma t_i \le 3,25 \text{ mm}$

Timber substructures

no performance determined

t _{N,II}	[m m]	0,6	33	0,7	5	0,8	88	1,0	0	1,1	3	1,:	25	1,	50	2,0	00
N	$I_{t,nom}$	_	_							3 N	m						
	0,50	_	_	1,00	ac	1,10	ac	1,20	ac	1,20	ac	1,20	abcd	1,20	abc	1,20	abc
	0,55	_	_	1,15	_	1,25	_	1,40	ac	1,40	ac	1,45	ac	1,45	ac	1,45	ac
1=	0,63	_	_	1,30	_	1,40	_	1,60	ac	1,60	ac	1,70	ac	1,70	ac	1,70	ac
<u> </u>	0,75	_	_	1,60	_	1,80	_	1,90	ac	2,00	ac	2,10	ac	2,10	ac	2,10	а
享	0,88	_	_	1,60	_	1,90	_	2,30	_	2,50	_	2,70	_	2,70	_	2,70	а
fo	1,00	_	_	1,60	_	2,10	_	2,60	_	2,90	_	3,10	_	3,10	_	3,10	а
V _{R,k} [kN] for t _{N,I} [mm]	1,13	_	_	1,60	_	2,10	_	2,60	_	2,90	_	3,40	_	3,40	_	3,50	_
×	1,25	_	_	1,60	_	2,10	_	2,60	_	2,90	_	3,70	_	3,70	_	3,80	_
>	1,50	_	_	1,60	_	2,10	_	2,60	_	2,90	_	3,70	_	3,70	_	—	_
	1,75	_	_	1,60	_	2,10	_	2,60	_	2,90	_	3,70	_	3,70	_	—	_
	2,00		_	1,60	_	2,10	_	2,60	_	2,90	_	3,70	_	_	_	_	_
	0,50	_	_	0,80	ac	1,10	ac	1,20	ac	1,50	ac	1,60	abcd	1,60	abc	1,60	abc
	0,55	—	_	0,80	_	1,10	_	1,20	ac	1,50	ac	1,65	ac	2,00	ac	2,05	ac
=	0,63	_	_	0,80	_	1,10	_	1,20	ac	1,50	ac	1,70	ac	2,40	ac	2,50	ac
Ē	0,75	_	_	0,80	_	1,10	_	1,20	ac	1,50	ac	1,70	ac	2,40	ac	3,40	а
± <u>₹</u>	0,88	_	_	0,80	_	1,10	_	1,20	_	1,50	_	1,70	_	2,40	_	3,40	а
for	1,00	_	_	0,80	_	1,10	_	1,20	_	1,50	_	1,70	_	2,40	_	3,40	а
N _{R,k} [kN] for t _{N,I} [mm]	1,13	—	_	0,80	_	1,10	_	1,20	_	1,50	_	1,70	_	2,40	_	3,40	_
7,×	1,25	—	_	0,80	_	1,10	_	1,20	_	1,50	_	1,70	_	2,40	_	3,40	_
ĮΞ	1,50	<u> </u>	_	0,80	_	1,10	_	1,20	_	1,50	_	1,70	_	2,40	_	—	_
	1,75	—	_	0,80	_	1,10	_	1,20	_	1,50	_	1,70	_	2,40	_	—	_
	2,00	_	_	0,80	_	1,10	_	1,20	_	1,50	_	1,70	_	_	_	_	_


Self drilling screw

JT3-3H-4,8 x L JT6-3H-4,8 x L

with undercut, hexagon head and sealing washer ≥ Ø14 mm

Annex 24

Materials

Fastener: stainless steel (1.4301) - EN 10088,

stainless steel (1.4404) - EN 10088 stainless steel (1.4301) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

S280GD, S320GD or S350GD - EN 10346

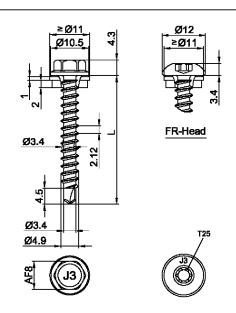
Drilling capacity $\Sigma t_i \le 2,20 \text{ mm}$

Timber substructures

no performance determined

t _{N,II}	[m m]	0,40	0,50	0,55	0,63	0,75	0,88	1,00	1,13	1,25	1,50	1,75
IV	$1_{\rm t,nom}$						_	•			•	
	0,40	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49
	0,50	0,49	0,80	0,80	0,80	0,80	0,80	0,80	0,80	0,80	0,80	_
1=	0,55	0,49	0,80	0,95	0,95	0,95	0,95	0,95	0,95	0,95	0,95	_
ΙĒ	0,63	0,49	0,80	0,95	1,15	1,15	1,15	1,15	1,15	1,15	1,15	_
Ţ.	0,75	0,49	0,80	0,95	1,15	1,45	1,45	1,45	1,45	1,45	_	_
ρ	0,88	0,49	0,80	0,95	1,15	1,45	1,68	1,68	1,68	1,68	_	_
12	1,00	0,49	0,80	0,95	1,15	1,45	1,68	1,88	1,88	_	_	_
V _{R,k} [kN] for t _{N,I} [mm]	1,13	0,49	0,80	0,95	1,15	1,45	1,68	1,88	_	_	_	_
>	1,25	0,49	0,80	0,95	1,15	1,45	1,68	_	_	_	_	_
	1,50	0,49	0,80	0,95	1,15	_	_	_	_	_	_	_
	1,75	0,49	—	_	_	_	_	_	_	_	_	_
	0,40	0,42	0,62	0,72	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85
	0,50	0,42	0,62	0,72	0,88	1,12	1,38	1,38	1,38	1,38	1,38	_
=	0,55	0,42	0,62	0,72	0,88	1,12	1,38	1,62	1,62	1,62	1,62	_
l <u>E</u>	0,63	0,42	0,62	0,72	0,88	1,12	1,38	1,62	1,62	1,62	1,62	_
Ţ <u>z</u>	0,75	0,42	0,62	0,72	0,88	1,12	1,38	1,62	1,62	1,62	_	_
ρ	0,88	0,42	0,62	0,72	0,88	1,12	1,38	1,62	1,62	1,62	_	_
ΙZ	1,00	0,42	0,62	0,72	0,88	1,12	1,38	1,62	1,62	_	_	_
N _{R,k} [kN] for t _{N,I} [mm]	1,13	0,42	0,62	0,72	0,88	1,12	1,38	1,62	_	_	_	-
ž	1,25	0,42	0,62	0,72	0,88	1,12	1,38	_	_	l —	_	_
	1,50	0,42	0,62	0,72	0,88	_	_	_	_	_	_	-
	1,75	0,42	_	_	_	_	_	_		_	_	_

If both components I and II are made of S320GD or S350GD the values may be increased by 8,3%.


Self drilling screw

JT3-FR-2H-4,8 x L JT6-FR-2H-4,8 x L

with undercut, round head with Torx® drive system and sealing washer ≥ Ø11 mm

Annex 25

Materials

Fastener: JT3-(FR-)2-4,9xL and JT4-(FR-)2-4,9xL

stainless steel (1.4301 /1.4567) - EN 10088

JT9-(FR-)2-4,9xL

stainless steel (1.4401 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

with vulcanised EPDM seal

Component I: aluminium alloy

with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Component II: timber - EN 14081

Drilling capacity $\Sigma t_i \leq 2,00 \text{ mm}$

Timber substructures

for timber substructures following performance were determined

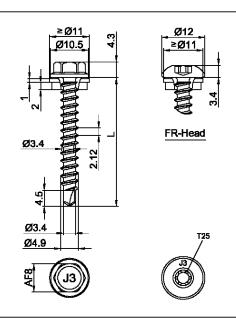
 $M_{v,k} = 4,672 \text{ Nm}$

 $f_{ax,k} = 8,575 \text{ N/mm}^2$ for $I_{eff} \ge 24,5 \text{ mm}$

	I,	_j =	25,	00	27,	00	29,	00	31,	00	33,	00	35,0	00	37,	00	39,	00	41,	00		
$\ $	$M_{t,i}$	nom =									_	-										
II		0,50	0,50	-	0,50	-	0,50	-	0,50	-	0,50	-	0,50	-	0,50	-	0,50	-	0,50	-	0,50	_
		0,60	0,66	-	0,66	-	0,66	-	0,66	-	0,66	-	0,66	-	0,66	-	0,66	-	0,66	-	0,66	ü
II	п	0,70	0,73	-	0,81	-	0,82	-	0,82	-	0,82	-	0,82	-	0,82	-	0,82	-	0,82	-	0,82	one
II	<u>"</u>	0,80	0,73	-	0,81	-	0,88	-	0,95	-	0,98	-	0,98	-	0,98	-	0,98	-	0,98	-	0,98	
II	ē	0,90	0,73	-	0,81	-	0,88	-	0,95	-	0,99	-	0,99	-	0,99	-	0,99	-	0,99	-	0,99	co
II	V _{R,k} for	1,00	0,73	-	0,81	-	0,88	-	0,95	-	1,00	-	1,00	-	1,00	-	1,00	-	1,00	-	1,00	of (be
II	>	1,20	0,73	-	0,81	-	0,88	-	0,95	-	1,00	-	1,00	-	1,00	-	1,00	-	1,00	-	1,00	are
H		1,50	0,73	-	0,81	-	0,88	-	0,95	-	1,00	-	1,00	-	1,00	-	1,00	-	1,00	-	1,00	ail
Ш		2,00	0,73	-	0,81	-	0,88	-	0,95	-	1,00	-	1,00	-	1,00	-	1,00	-	1,00	-	1,00	+
	-	Na;ii,ĸ =	0,8	86	0,9	95	1,0)4	1,1	12	1,2	21	1,3	30	1,3	88	1,4	17	1,5	56	failure of component II	see chapter 4.2.2

Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

The values indicated above, depending on the screw depth l_g , shall apply to $k_{mod}=0.90$ and the timber strength class C24 ($\rho_k=350$ kg / m^3). For other values of k_{mod} and strength classes see chapter 4.2.2


For $k_{mod} < 0.90$: failure of component I see right column and failure of component II see chapter 4.2.2 with $f_{1,k} = 80 \cdot 10^{-6} \cdot \rho_k^2$ (load carrying class 3, ρ_k in kg/m³, max. 500 kg/m³) and yield moment $M_{y,k} = 5990$ Nmm.

Self-drilling screw	
JT3-(FR-)2-4,9xL	
JT4-(FR-)2-4,9xL	Annex 26
JT9-(FR-)2-4,9xL	
With hexagon head or FR-head and seal washer $\geq \emptyset$ 11,0 mm	

Page 40 of European technical approval ETA-10/0200 of 27 June 2013

English translation prepared by DIBt

Materials

Fastener: JT3-(FR-)2-4,9xL and JT4-(FR-)2-4,9xL

stainless steel (1.4301 / 1.4567) - EN 10088

JT9-(FR-)2-4,9xL

stainless steel (1.4401 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) – EN 10088

with vulcanised EPDM seal

Component I: aluminium alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: timber - EN 14081

Drilling capacity $\Sigma t_i \le 2,00 \text{ mm}$

Timber substructures

for timber substructures following performance were determined

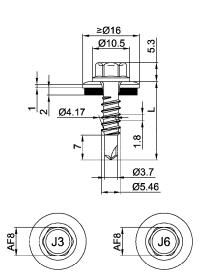
 $M_{y,k} = 4,672 \text{ Nm}$

 $f_{ax,k} = 8,575 \text{ N/mm}^2$ for $l_{eff} \ge 24,5 \text{ mm}$

\mathbb{I}	١ _g	₃ =	25,0	00	27,0	00	29,0	00	31,	00	33,	00	35,0	00	37,	00	39,	00	41,	00		
\mathbb{I}	M _{t,r}	nom =									_	-										
ΙГ		0,50	0,66	-	0,66	-	0,66	-	0,66	-	0,66	-	0,66	-	0,66	-	0,66	-	0,66	-	0,66	_
		0,60	0,73	-	0,81	-	0,87	-	0,87	-	0,87	-	0,87	-	0,87	-	0,87	-	0,87	-	0,87	ţ
	п	0,70	0,73	-	0,81	-	0,88	-	0,95	-	1,03	-	1,07	-	1,07	-	1,07	-	1,07	-	1,07	one
	<u>"</u> .	0,80	0,73	-	0,81	-	0,88	-	0,95	-	1,03	-	1,10	-	1,17	-	1,25	-	1,28	-	1,28	component aring)
	V _{R,k} for t _{N,I}	0,90	0,73	-	0,81	-	0,88	-	0,95	-	1,03	-	1,10	-	1,17	-	1,25	-	1,29	-	1,29	co
	Ä.	1,00	0,73	-	0,81	-	0,88	-	0,95	-	1,03	-	1,10	-	1,17	-	1,25	-	1,30	-	1,30	
	>	1,20	0,73	-	0,81	-	0,88	-	0,95	-	1,03	-	1,10	-	1,17	-	1,25	-	1,30	-	1,30	failure
		1,50	0,73	-	0,81	-	0,88	-	0,95	-	1,03	-	1,10	-	1,17	-	1,25	-	1,30	-	1,30	lail l
		2,00	0,73	-	0,81	-	0,88	-	0,95	-	1,03	-	1,10	-	1,17	-	1,25	-	1,30	-	1,30	
	2	NR,II,k =	0,8	16	0,9	5	1,0	14	1,	12	1,2	21	1,3	0	1,3	38	1,2	1 7	1,5	56	failure of component II	see chapter 4.2.2

Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

The values indicated above, depending on the screw depth l_g , shall apply to $k_{mod} = 0.90$ and the timber strength class C24 ($\rho_k = 350$ kg / m^3). For other values of k_{mod} and strength classes see chapter 4.2.2


For $k_{mod} < 0.90$: failure of component I see right column and failure of component II see chapter 4.2.2 with $f_{1,k} = 80 \cdot 10^{-6} \cdot \rho_k^2$ (load carrying class 3, ρ_k in kg/m³, max. 500 kg/m³) and yield moment $M_{y,k} = 5990$ Nmm.

Self-drilling screw	
JT3-(FR-)2-4,9xL	
JT4-(FR-)2-4,9xL	Annex 27
JT9-(FR-)2-4,9xL	
With hexagon head or FR-head and seal washer $\geq \varnothing$ 11,0 mm	

Page 41 of European technical approval ETA-10/0200 of 27 June 2013

English translation prepared by DIBt

Materials

Fastener: stainless steel (1.4301) - EN 10088,

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

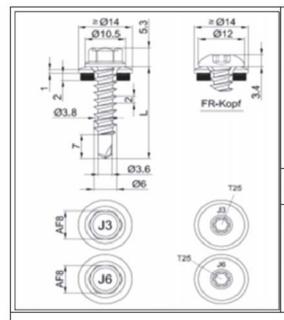
Component II: S235 - EN 10025-1

S280GD, S320GD or S350GD - EN 10346

Drilling capacity $\Sigma t_i \le 2,50 \text{ mm}$

Timber substructures

no performance determined


t _{N,II}	[m m]	0,6	3	0,7	75	0,8	38	1,0	0	1,1	3	1,2	25	1,5	50	2,0	00
IV	$1_{\rm t,nom}$								5 N	l m							
	0,50	_	_	_	_	_	_	_	_	-	_	-	_	_	_	_	_
	0,55	<u> </u>	_	—	_	—	_	—	_	—	_	—	_	l —	_	—	_
╽┲	0,63	1,00	_	1,00	_	1,00	_	1,00	_	1,00	_	1,00	_	1,00	ac	l —	_
<u> </u>	0,75	1,00	_	1,70	_	1,70	_	1,70	_	1,70	_	1,70	_	1,70	_	—	_
‡ <u>ż</u>	0,88	1,00	_	1,70	_	1,70	_	1,70	_	1,70	_	1,70	_	1,70	_	l —	_
ξ	1,00	1,00	_	1,70	_	1,70	_	1,70	_	1,70	_	1,70	_	1,70	_	l —	_
ΙΞ	1,13	1,00	_	1,70	_	1,70	_	1,70		1,70	_	1,70	_	_	_	—	_
V _{R.k} [kN] for t _{N,I} [mm]	1,25	1,00	_	1,70	_	1,70	_	1,70	_	1,70	_	1,70	_	_	_	<u> </u>	_
>	1,50	1,00	_	1,70	_	1,70	_	1,70	_	l —	_	—	_	_	_	l —	_
	1,75	1,00	_	1,70	_	—	_	_	_	—	_	_	_	_	_	l —	_
	2,00	_	_	l —	_	_	_	_	_	—	_	_	_	_	_	—	_
	0,50	0,32	_	0,43	_	0,49	_	0,59	_	0,76	_	0,81	_	1,08	ac	1,08	ac
	0,55	0,41	_	0,55	_	0,61	_	0,75	_	0,95	_	1,02	_	1,36	ac	l —	_
۱ᡓ	0,63	0,60	_	0,80	_	0,90	_	1,10	_	1,40	_	1,50	_	2,00	ac	l —	_
<u> </u>	0,75	0,60	_	0,80	_	0,90	_	1,10	_	1,40	_	1,50	_	2,00	_	—	_
<u>‡</u>	0,88	0,60	_	0,80	_	0,90	_	1,10	_	1,40	_	1,50	_	2,00	_	l —	_
ģ	1,00	0,60	_	0,80	_	0,90	_	1,10	_	1,40	_	1,50	_	2,00	_	l —	_
N _{R,k} [kN] for t _{N,I} [mm]	1,13	0,60	_	0,80	_	0,90	_	1,10	_	1,40	_	1,50	_	—	_	—	_
*	1,25	0,60	_	0,80	_	0,90	_	1,10	_	1,40	_	1,50	_	—	_	—	_
ž	1,50	0,60	_	0,80	_	0,90	_	1,10	_	—	_	—	_	—	_	—	_
	1,75	0,60	_	0,80	_	—	_	_	_	—	_	-	_	_	_	—	_
	2,00	_	_	_	_	—	_	_	_	_	_		_	_	_	_	_

Self drilling screw

JT3-2H-5,5 x L JT6-2H-5,5 x L

with undercut, hexagon head and sealing washer ≥ Ø16 mm

Materials

Fastener: stainless steel (1.4301 / 1.4567) - EN 10088

stainless steel (1.4401 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

with vulcanised EPDM seal

Component I: aluminium alloy

with $R_{m.min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Component II: aluminium alloy

with R_{m,min} = 165 N/mm² – EN 573 Timber – EN 14081

Drilling capacity $\Sigma t_i \le 2,00 \text{ mm}$

Timber substructures

for timber substructures following performance were determined

= 7,911 Nm $M_{y,k}$

 $= 8,575 \text{ N/mm}^2$ for f_{ax,k}

≥ 26,0 mm I_{eff}

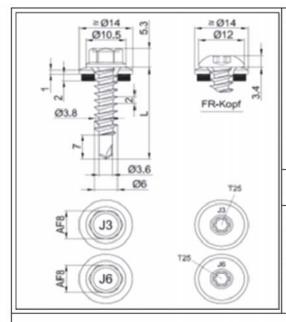
	t _N	,II =	0,4	10	0,5	0	0,6	0	0,7	70	0,8	30	0,9	0	1,0	00	1,2	20	1,5	50		
	M _{t,r}	nom =									_	-										
$\ $		0,40	0,29	-	0,29	-	0,29	-	0,29	-	0,29	-	0,29	-	0,29	-	0,29	-	0,29	-	0,29	_
Ш		0,50	0,29	-	0,42	-	0,51	-	0,60	-	0,69	-	0,75	-	0,81	-	0,81	-	0,81	-	0,81	int
Ш	п	0,60	0,29	-	0,42	-	0,53	-	0,63	-	0,71	-	0,78	-	0,85	-	0,85	-	-	-	0,85	one
Ш	<u>.</u>	0,70	0,29	-	0,42	-	0,53	-	0,65	-	0,74	-	0,82	-	0,89	-	0,89	-	-	-	0,89	component aring)
Ш	V _{R,k} for	0,80	0,29	-	0,42	-	0,53	-	0,65	-	0,76	-	0,85	-	0,92	-	0,92	-	-	-	0,92	col
Ш	R, K	0,90	0,29	-	0,42	-	0,55	-	0,68	-	0,81	-	0,88	-	0,97	-	0,97	-	-	-	0,97	of (be
Ш		1,00	0,29	-	0,42	-	0,56	-	0,71	-	0,85	-	0,93	-	1,00	-	-	-	-	-	1,00	failure
Ш		1,20	0,29	-	0,42	-	0,59	-	0,77	-	0,94	-	-	-	-	-	-	-	-	-	1,24	faill
Ш		1,50	0,29	-	0,42	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1,59	
	N _{R,II,K} =		0,2	22	0,2	28	0,3	55	0,4	13	0,5	50	0,5	i8	0,6	88	3,0	36	1,1	18	failure of component II	see chapter 4.2.2

Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

For other areas of application see allgemeinge bauaufsichtliche Zulassung Z-14.4-426.

The values indicated above, depending on the screw depth Ig, shall apply to k_{mod} = 0,90 and the timber strength class C24 (ρ_k = 350 kg / m³). For other values of k_{mod} and strength classes see chapter 4.2.2

_			
6~1	E 시내	lina	screw
201	1-01011		SCIEW


JT3-2-6,0xL JT6-2-6,0xL JT3-FR-2-6,0xL JT6-FR-2-6,0xL

With hexagon head and seal washer $\geq \emptyset$ 14,0 mm

Annex 29

8.06.02-186/12 Z56763.13

Materials

Fastener: stainless steel (1.4301 / 1.4567) - EN 10088

stainless steel (1.4401 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

with vulcanised EPDM seal

Component I: aluminium alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: aluminium alloy

with R_{m,min} = 215 N/mm² – EN 573 Timber – EN 14081

Drilling capacity $\Sigma t_i \le 2,00 \text{ mm}$

Timber substructures

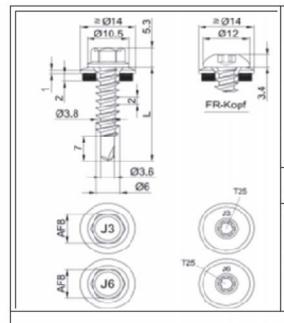
for timber substructures following performance were determined

= 7,911 Nm $M_{y,k}$

 $= 8,575 \text{ N/mm}^2$ for I_{eff} ≥ 26,0 mm $f_{ax,k}$

	t _{N,}	,ıı =	0,4	10	0,5	50	0,6	0	0,7	70	0,8	30	0,9	0	1,0	00	1,2	20	1,5	50		
	$M_{t,n}$	om =									-	-										
		0,40	0,38	-	0,38	-	0,38	-	0,38	-	0,38	-	0,38	-	0,38	-	0,38	-	0,38	-	0,38	_
Ш		0,50	0,38	-	0,55	-	0,67	-	0,78	-	0,90	-	0,98	-	1,05	-	1,05	-	1,05	-	1,05	ij
Ш	II	0,60	0,38	-	0,55	-	0,70	-	0,81	-	0,93	-	1,02	-	1,10	-	1,10	-	-	-	1,10	one
Ш.	ž	0,70	0,38	-	0,55	-	0,70	-	0,84	-	0,96	-	1,07	-	1,15	-	1,15	-	-	-	1,15	component aring)
Ш,	V _{R.k} for	0,80	0,38	-	0,55	-	0,70	-	0,84	-	0,99	-	1,11	-	1,20	-	1,20	-	-	-	1,20	col
Ш,	, X	0,90	0,38	-	0,55	-	0,72	-	0,88	-	1,05	-	1,15	-	1,25	-	1,25	-	-	-	1,25	of (be
11	_	1,00	0,38	-	0,55	-	0,74	-	0,92	-	1,11	-	1,21	-	1,30	-	-	-	-	-	1,30	er l
Ш		1,20	0,38	-	0,55	-	0,78	-	1,00	-	1,23	-	-	-	-	-	-	-	-	-	1,61	failure
		1,50	0,38	-	0,55	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2,08	_
	N. II. k		0,2	29	0,0	37	0,4	16	0,5	55	0,0	64	0,7	'5	0,8	37	1,	12	1,5	53	failure of component II	see chapter 4.2.2

Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.


For other areas of application see allgemeinge bauaufsichtliche Zulassung Z-14.4-426.

The values indicated above, depending on the screw depth Ig, shall apply to k_{mod} = 0,90 and the timber strength class C24 (ρ_k = 350 kg / m³). For other values of k_{mod} and strength classes see chapter 4.2.2

Self-drilling screw		
JT3-2-6,0xL JT6-2-6 JT3-FR-2-6,0xL JT6-FF With hexagon head and seal washer ≥ ½	-6,0xL	

8.06.02-186/12 Z56763.13

Materials

Fastener: stainless steel (1.4301 / 1.4567) – EN 10088

stainless steel (1.4401 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

with vulcanised EPDM seal

Component I: aluminium alloy

with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Component II: S235 - EN 10025-1

S280GD, S320GD - EN 10346

timber - EN14081

Drilling capacity $\Sigma t_i \le 2,00 \text{ mm}$

Timber substructures

for timber substructures following performance were determined

 $M_{y,k} = 7,911 \text{ Nm}$

 $f_{ax,k} = 8,575 \text{ N/mm}^2$ for $I_{eff} \ge 26,0 \text{ mm}$

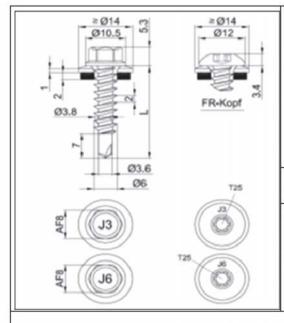
l .	20.000		_		-								_	T 4.0					
t,	ı,ıı =	0,4	10	0,5	0	0,6	3	0,7	75	0,8	88	1,0	10	1,2	25	1,5	0		
M _t	nom =								-	_									
	0,40	0,29	-	0,29	-	0,29	-	0,29	-	0,29	-	0,29	-	0,29	-	0,29	-	0,29	_
	0,50	0,40	-	0,40	-	0,40	-	0,65	-	0,73	-	0,81	-	0,81	-	0,81	-	0,81	int
	0,60	0,40	-	0,50	-	0,50	-	0,67	-	0,76	-	0,85	-	0,85	-	-	-	0,85	one
	0,70	0,40	-	0,50	-	0,61	-	0,70	-	0,80	-	0,89	-	0,89	-	-	-	0,89	component aring)
V _{R,k} for t _{N,I}	0,80	0,40	-	0,50	-	0,61	-	0,71	-	0,82	-	0,92	-	0,92	-	-	-	0,92	of comp (bearing)
, X,	0,90	0,40	-	0,50	-	0,61	-	0,75	-	0,86	-	0,97	-	-	-	-	-	0,97	
^	1,00	0,40	-	0,50	-	0,61	-	0,78	-	0,89	-	1,00	-	-	-	-	-	1,00	are l
	1,20	0,40	-	0,50	-	0,61	-	0,86	-	0,93	-	-	-	-	-	-	-	1,24	failure
	1,50	0,40	-	0,50	-	0,61	-	-	-	-	-	-	-	-	-	-	-	1,59	_
N _{R,II,k} =		0,5	i3	0,7	75	0,8	30	1,0	05	1,3	35	1,6	3	2,2	26	3,0)2	failure of component II	see chapter 4.2.2

Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

Component II of steel S320GD or S350GD: the indicated values of the pull-out resistance $N_{R,II,k}$ can be increased by 8.0%.

For other areas of application see allgemeinge bauaufsichtliche Zulassung Z-14.4-426.

The values indicated above, depending on the screw depth I_g , shall apply to $k_{mod} = 0.90$ and the timber strength class C24 ($\rho_k = 350$ kg / m³). For other values of k_{mod} and strength classes see chapter 4.2.2


Self-drilling sc	rew
------------------	-----

JT3-2-6,0xL JT6-2-6,0xL JT3-FR-2-6,0xL JT6-FR-2-6,0xL

With hexagon head or FR-head and seal washer $\geq \emptyset$ 14,0 mm

Annex 31

Materials

Fastener: stainless steel (1.4301 / 1.4567) – EN 10088

stainless steel (1.4401 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

with vulcanised EPDM seal

Component I: aluminium alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: S235 - EN 10025-1

S280GD, S320GD - EN 10346

timber - EN14081

Drilling capacity $\Sigma t_i \le 2,00 \text{ mm}$

Timber substructures

for timber substructures following performance were determined

 $M_{y,k} = 7,911 \text{ Nm}$

 $f_{ax,k} = 8,575 \text{ N/mm}^2 \quad \text{for} \quad I_{eff} \geq 26,0 \text{ mm}$

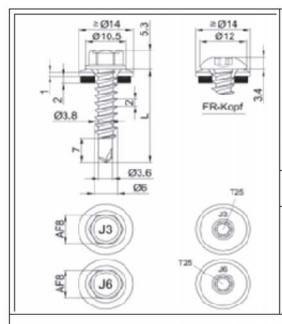
t	N,II =	0,4	0	0,5	50	0,6	3	0,7	75	0,8	38	1,0	0	1,2	25	1,5	50		
_	t,nom =			•		•		<u> </u>				•		•					
	0,40	0,38	-	0,38	-	0,38	-	0,38	-	0,38	-	0,38	-	0,38	-	0,38	-		_
	0,50	0,52	-	0,52	-	0,52	-	0,84	-	0,95	-	1,05	-	1,05	-	1,05	-		ti
	0,60	0,52	-	0,65	-	0,65	-	0,87	-	0,99	-	1,10	-	1,10	-	-	-		one
Ţ,	0,70	0,52	-	0,65	-	0,79	-	0,90	-	1,03	-	1,15	-	1,15	-	-	-		component I aring)
[] []	0,80	0,52	-	0,65	-	0,79	-	0,92	-	1,06	-	1,20	-	1,20	-	-	-		of comp (bearing)
V _{R,k} for	0,90	0,52	-	0,65	-	0,79	-	0,97	-	1,11	-	1,25	-	-	-	-	-		등 링
^	1,00	0,52	-	0,65	-	0,79	-	1,02	-	1,16	-	1,30	-	-	-	-	-		failure
	1,20	0,52	-	0,65	-	0,79	-	1,12	-	1,21	-	-	-	-	-	-	-		ail
	1,50	0,52	-	0,65	-	0,79	-	-	-	-	-	-	-	-	-	-	-		
N _{R,II,K} =		0,5	33	0,7	75	0,8	30	1,0)5	1,3	35	1,6	3	2,2	26	3,0)2	failure of component II	see chapter 4.2.2

Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

Component II of steel S320GD or S350GD: the indicated values of the pull-out resistance $N_{R,II,k}$ can be increased by 8.0%.

For other areas of application see allgemeinge bauaufsichtliche Zulassung Z-14.4-426.

The values indicated above, depending on the screw depth I_g , shall apply to $k_{mod} = 0.90$ and the timber strength class C24 ($\rho_k = 350 \text{ kg} / \text{m}^3$). For other values of k_{mod} and strength classes see chapter 4.2.2


Self-d	lrilling	g screw
--------	----------	---------

JT3-2-6,0xL JT6-2-6,0xL JT3-FR-2-6,0xL JT6-FR-2-6,0xL

With hexagon head or FR-head and seal washer $\geq \varnothing$ 14,0 mm

Annex 32

Materials

Fastener: stainless steel (1.4301 / 1.4567) – EN 10088

stainless steel (1.4401 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

with vulcanised EPDM seal

Component I: aluminium alloy

with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Component II: timber - EN14081

Drilling capacity $\Sigma t_i \le 2,00 \text{ mm}$

Timber substructures

for timber substructures following performance were determined

 $M_{v,k} = 7,911 \text{ Nm}$

 $f_{ax,k} = 8,575 \text{ N/mm}^2$ for $I_{eff} \ge 26,0 \text{ mm}$

	I _q = 31,00 32,00				00	33,	00	34,0	00	35,0	00	36,	00	≥ 37,00			_
-	nom =	0.,		02,		_					22,22						
	0,50	0,81	-	0,81	-	0,81	-	0,81	-	0,81	-	0,81	-	0,81	-	0,81	_
	0,60	0,85	-	0,85	-	0,85	-	0,85	-	0,85	-	0,85	-	0,85	-	0,85	Ħ
	0,70	0,89	-	0,89	-	0,89	-	0,89	-	0,89	-	0,89	-	0,89	-	0,89	one
	0,80	0,92	-	0,92	-	0,92	-	0,92	-	0,92	-	0,92	-	0,92	-	0,92	component aring)
ort	0,90	0,96	-	0,97	-	0,97	-	0,97	-	0,97	-	0,97	-	0,97	-	0,97	of comp (bearing)
V _{R,k} for t _{N,I}	1,00	0,96	-	1,00	-	1,00	-	1,00	-	1,00	-	1,00	-	1,00	-	1,00	of (be
>	1,20	0,96	-	1,00	-	1,04	-	1,08	-	1,12	-	1,16	-	1,20	-	1,24	<u>ne</u>
	1,50	0,96	-	1,00	-	1,04	-	1,08	-	1,12	-	1,16	-	1,20	-	1,59	failure
	2,00	0,96	-	1,00	-	1,04	-	1,08	-	1,12	-	1,16	-	1,20	-	1,59	<u> </u>
N _{R,II,K} =		1,2	27	1,3	32	1,3	38	1,4	3	1,4	.8	1,5	53	1,5	59	failure of component II	see chapter 4.2.2

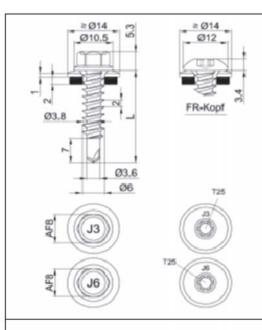
For timber substructures the indicated values of the shear force resistance $V_{R,k}$ shall apply with and without washer. For other areas of application see allgemeinge bauaufsichtliche Zulassung Z-14.4-426.

The values indicated above, depending on the screw depth I_{g_i} shall apply to k_{mod} = 0,90 and the timber strength class C24 (ρ_k = 350 kg / m³). For other values of k_{mod} and strength classes see chapter 4.2.2

For $k_{mod} < 0.90$: failure of component I see right column and failure of component II see chapter 4.2.2 with $f_{1,k} = 80 \cdot 10^{-6} \cdot \rho_k^2$ (load carrying class 3, ρ_k in kg/m³, max. 500 kg/m³) and yield moment $M_{y,k} = 7.911$ Nmm.

_					
20	₽~	rill	lina	CC	POLA
JE	II-u		IIIIu	36	

JT3-2-6,0xL JT6-2-6,0xL JT3-FR-2-6,0xL JT6-FR-2-6,0xL


With hexagon head or FR-head and seal washer ≥ Ø 14,0 mm

Annex 33

Page 47 of European technical approval ETA-10/0200 of 27 June 2013

English translation prepared by DIBt

Materials

Fastener: stainless steel (1.4301 / 1.4567) – EN 10088

stainless steel (1.4401 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

with vulcanised EPDM seal

Component I: aluminium alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: timber - EN 14081

Drilling capacity $\Sigma t_i \le 2,00 \text{ mm}$

Timber substructures

for timber substructures following performance were determined

 $M_{v,k} = 7,911 \text{ Nm}$

 $f_{ax,k} = 8,575 \text{ N/mm}^2$ for $I_{eff} \ge 26,0 \text{ mm}$

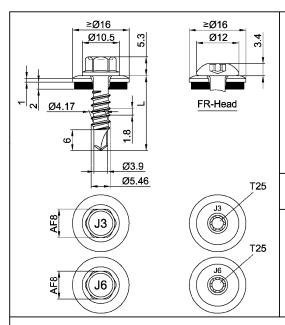
- 1	9		32,	00	33,	00	34,	00	35,0	35,00		36,00		≥ 37,00			
M _{t,}	M _{t,nom} =					_											
	0,50	0,96	-	1,00	-	1,04	-	1,05	-	1,05	-	1,05	-	1,05	-	1,05	_
	0,60	0,96	-	1,00	-	1,04	-	1,08	-	1,10	-	1,10	-	1,10	-	1,10	ĭ
۱.,	0,70	0,96	-	1,00	-	1,04	-	1,08	-	1,12	-	1,15	-	1,15	-	1,15	one
V _{R,k} for t _{N,I} =	0,80	0,96	-	1,00	-	1,04	-	1,08	-	1,12	-	1,16	-	1,20	-	1,20	of component (bearing)
for	0,90	0,96	-	1,00	-	1,04	-	1,08	-	1,12	-	1,16	-	1,20	-	1,25	col
, x,	1,00	0,96	-	1,00	-	1,04	-	1,08	-	1,12	-	1,16	-	1,20	-	1,30	of (be
^	1,20	0,96	-	1,00	-	1,04	-	1,08	-	1,12	-	1,16	-	1,20	-	1,61	a l
	1,50	0,96	-	1,00	-	1,04	-	1,08	-	1,12	-	1,16	-	1,20	-	2,08	failure
	2,00	0,96	-	1,00	-	1,04	-	1,08	-	1,12	-	1,16	-	1,20	-	2,08	_
N _{R.II,K} =		1,2	27	1,3	32	1,3	38	1,4	13	1,4	.8	1,5	53	1,5	59	failure of component II	see chapter 4.2.2

For timber substructures the indicated values of the shear force resistance $V_{R,k}$ shall apply with and without washer. For other areas of application see allgemeinge bauaufsichtliche Zulassung Z-14.4-426.

The values indicated above, depending on the screw depth I_g , shall apply to $k_{mod} = 0.90$ and the timber strength class C24 ($\rho_k = 350$ kg / m^3). For other values of k_{mod} and strength classes see chapter 4.2.2

For $k_{mod} < 0.90$: failure of component I see right column and failure of component II see chapter 4.2.2 with $f_{1,k} = 80 \cdot 10^{-6} \cdot \rho_k^2$ (load carrying class 3, ρ_k in kg/m³, max. 500 kg/m³) and yield moment $M_{y,k} = 7.911$ Nmm.

		_		
Self-d	rill	ina	CCI	CALA
Sell-u		шu	5 01	CVV


JT3-2-6,0xL JT6-2-6,0xL JT3-FR-2-6,0xL JT6-FR-2-6,0xL

With hexagon head or FR-head and seal washer $\geq \emptyset$ 14,0 mm

Page 48 of European technical approval ETA-10/0200 of 27 June 2013

English translation prepared by DIBt

Materials

Fastener: stainless steel (1.4301) - EN 10088,

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

S280GD, S320GD or S350GD - EN 10346

Drilling capacity $\Sigma t_i \leq 3,50 \text{ mm}$

Timber substructures

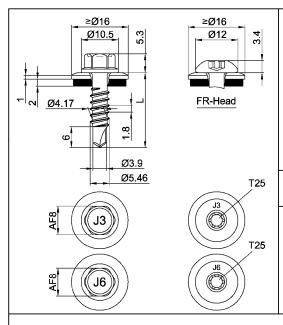
no performance determined

t _{N,II}	[m m]	0,40	0,50	0,55	0,63	0,75	0,88	1,00	1,13	1,25	1,50	2,00
N	$1_{\rm t,nom}$		1 Nm			2 Nm				2,5 Nm		
	0,50	0,56	0,60	0,64	0,68	0,83	0,98	1,13	1,13	1,13	1,13	1,13
	0,55	0,58	0,67	0,73	0,78	0,94	1,09	1,25	1,25	1,25	1,25	1,25
1-	0,63	0,60	0,71	0,82	0,87	1,04	1,21	1,38	1,38	1,38	1,38	1,38
] <u>E</u>	0,75	0,62	0,74	0,86	0,97	1,15	1,33	1,51	1,51	1,51	1,51	1,51
Ţ.	0,88	0,62	0,74	0,86	1,02	1,42	2,04	2,67	2,67	2,67	2,67	2,67
for t _{N,I} [mm]	1,00	0,62	0,74	0,86	1,06	1,56	2,15	2,77	2,77	2,77	2,77	2,77
Z	1,13	0,62	0,74	0,86	1,11	1,70	2,28	2,87	3,22	3,57	3,92	3,92
V _{R,k} [kN]	1,25	0,62	0,74	0,86	1,11	1,70	2,28	2,87	3,22	3,57	3,92	3,92
>	1,50	0,62	0,74	0,86	1,11	1,70	2,28	2,87	3,22	3,57	3,92	3,92
	1,75	0,62	0,74	0,86	1,11	1,70	2,28	2,87	3,22	3,57	3,92	_
	2,00	0,62	0,74	0,86	1,11	1,70	2,28	2,87	3,22	3,57	3,92	_
	0,50	0,30	0,41	0,47	0,56	0,73	1,06	1,40	1,48	1,48	1,48	1,48
	0,55	0,30	0,41	0,47	0,56	0,73	1,06	1,40	1,65	1,65	1,65	1,65
=	0,63	0,30	0,41	0,47	0,56	0,73	1,06	1,40	1,71	1,83	1,83	1,83
<u> </u>	0,75	0,30	0,41	0,47	0,56	0,73	1,06	1,40	1,71	1,99	2,23	2,23
Ţ.	0,88	0,30	0,41	0,47	0,56	0,73	1,06	1,40	1,71	1,99	2,59	2,59
ξ	1,00	0,30	0,41	0,47	0,56	0,73	1,06	1,40	1,71	1,99	2,59	2,59
ĮŹ	1,13	0,30	0,41	0,47	0,56	0,73	1,06	1,40	1,71	1,99	2,59	2,59
N _{R,k} [kN] for t _{N,I} [mm]	1,25	0,30	0,41	0,47	0,56	0,73	1,06	1,40	1,71	1,99	2,59	2,59
=	1,50	0,30	0,41	0,47	0,56	0,73	1,06	1,40	1,71	1,99	2,59	2,59
	1,75	0,30	0,41	0,47	0,56	0,73	1,06	1,40	1,71	1,99	2,59	
	2,00	0,30	0,41	0,47	0,56	0,73	1,06	1,40	1,71	1,99	2,59	_

If both components I and II are made of S320GD or S350GD the values may be increased by 8,3%.

Self drilling screw	
50 OLL DL - 5 5 1	

JT3-2H Plus - 5,5 x L JT6-2H Plus - 5,5 x L JT3-FR-2H Plus - 5,5 x L


JT6-FR-2H Plus - 5,5 x L
with undercut, hexagon head or round head with Torx® drive system and sealing
washer ≥ Ø16 mm

Annex 35

Page 49 of European technical approval ETA-10/0200 of 27 June 2013

English translation prepared by DIBt

Materials

Fastener: stainless steel (1.4301) - EN 10088,

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

S280GD, S320GD or S350GD - EN 10346

Drilling capacity $\Sigma t_i \le 3,50 \text{ mm}$

Timber substructures

no performance determined

t _{N,II}	[m m]	2 x 0,63	2 x 0,75	2 x 0,88	2 x 1,00	2 x 1,13	2 x 1,25
IV	$I_{t,nom}$	2 Nm	3 N	l m		4 Nm	
	0,40	_	_	_	_	_	_
	0,50	_	_	_	_	_	_
=	0,55	_	_	_	_	_	_
<u> </u>	0,63	1,65	1,78	1,91	2,04	2,04	2,04
<u>z</u>	0,75	1,65	2,60	2,76	2,92	2,92	2,92
Į.	0,88	1,65	2,60	3,39	3,55	3,55	3,55
V _{R,k} [kN] for t _{N,I} [mm]	1,00	1,65	2,60	3,39	4,17	4,17	4,17
 	1,13	1,65	2,60	3,39	4,17	4,17	_
>	1,25	1,65	2,60	3,39	4,17	_	_
	1,50	1,65	2,60	3,39	4,17	_	_
	1,75	1,65	2,60	_	_	_	_
	0,40	1,01	1,48	1,48	1,48	1,48	1,48
	0,50	1,01	1,65	1,65	1,65	1,65	1,65
ן ⊑	0,55	1,01	1,78	1,83	1,83	1,83	1,83
<u>Ē</u>	0,63	1,01	1,78	2,23	2,23	2,23	2,23
<u>‡</u>	0,75	1,01	1,78	2,31	2,84	2,84	2,84
for	0,88	1,01	1,78	2,31	2,84	2,84	2,84
N _{R,k} [kN] for t _{N,I} [mm]	1,00	1,01	1,78	2,31	2,84	2,84	2,84
*	1,13	1,01	1,78	2,31	2,84	2,84	_
۱ź	1,25	1,01	1,78	2,31	2,84	_	_
	1,50	1,01	1,78	2,31	2,84	_	_
	1,75	1,01	1,78	_	–	_	_

If both components I and II are made of S320GD or S350GD the values may be increased by 8,3%.

Self drilling screw	
JT3-2H Plus - 5,5 x L JT6-2H Plus - 5,5 x L JT3-FR-2H Plus - 5,5 x L JT6-FR-2H Plus - 5,5 x L	Annex 36
with undercut, hexagon head or round head with Torx® drive system and sealing washer ≥ Ø16 mm	

Page 50 of European technical approval ETA-10/0200 of 27 June 2013

English translation prepared by DIBt

<u>Materials</u>

Fastener: stainless steel (1.4301) - EN 10088,

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) - EN 10088


Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

S280GD, S320GD or S350GD - EN 10346

Drilling capacity

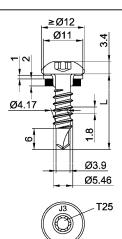
 $\Sigma t_i \leq 3,50 \text{ mm}$

no performance determined

t _{N,II}	[mm]	0,40	0,50	0,55	0,63	0,75	0,88	1,00	1,13	1,25	1,50	2,00
IV	$l_{t,nom}$		1 Nm			2 Nm				2,5 Nm		
	0,50	0,56	0,60	0,64	0,68	0,83	0,98	1,13	1,13	1,13	1,13	1,13
	0,55	0,58	0,67	0,73	0,78	0,94	1,09	1,25	1,25	1,25	1,25	1,25
l -	0,63	0,60	0,71	0,82	0,87	1,04	1,21	1,38	1,38	1,38	1,38	1,38
<u> </u>	0,75	0,62	0,74	0,86	0,97	1,15	1,33	1,51	1,51	1,51	1,51	1,51
Ţ,	0,88	0,62	0,74	0,86	1,02	1,42	2,04	2,67	2,67	2,67	2,67	2,67
V _{R,k} [kN] for t _{N,I} [mm]	1,00	0,62	0,74	0,86	1,06	1,56	2,15	2,77	2,77	2,77	2,77	2,77
Ϊ́Ξ	1,13	0,62	0,74	0,86	1,11	1,70	2,28	2,87	3,22	3,57	3,92	3,92
*	1,25	0,62	0,74	0,86	1,11	1,70	2,28	2,87	3,22	3,57	3,92	3,92
>	1,50	0,62	0,74	0,86	1,11	1,70	2,28	2,87	3,22	3,57	3,92	3,92
	1,75	0,62	0,74	0,86	1,11	1,70	2,28	2,87	3,22	3,57	3,92	_
	2,00	0,62	0,74	0,86	1,11	1,70	2,28	2,87	3,22	3,57	3,92	_
	0,50	0,30	0,41	0,47	0,56	0,73	0,86	0,86	0,86	0,86	0,86	0,86
	0,55	0,30	0,41	0,47	0,56	0,73	1,04	1,04	1,04	1,04	1,04	1,04
=	0,63	0,30	0,41	0,47	0,56	0,73	1,06	1,20	1,20	1,20	1,20	1,20
<u> </u>	0,75	0,30	0,41	0,47	0,56	0,73	1,06	1,40	1,56	1,56	1,56	1,56
享	0,88	0,30	0,41	0,47	0,56	0,73	1,06	1,40	1,71	1,99	2,32	2,32
N _{R,k} [kN] for t _{N,I} [mm]	1,00	0,30	0,41	0,47	0,56	0,73	1,06	1,40	1,71	1,99	2,32	2,32
ΙŹ	1,13	0,30	0,41	0,47	0,56	0,73	1,06	1,40	1,71	1,99	2,32	2,32
×	1,25	0,30	0,41	0,47	0,56	0,73	1,06	1,40	1,71	1,99	2,32	2,32
۱ź	1,50	0,30	0,41	0,47	0,56	0,73	1,06	1,40	1,71	1,99	2,32	2,32
	1,75	0,30	0,41	0,47	0,56	0,73	1,06	1,40	1,71	1,99	2,32	_
	2,00	0,30	0,41	0,47	0,56	0,73	1,06	1,40	1,71	1,99	2,32	_

If both components I and II are made of S320GD or S350GD the values may be increased by 8,3%.

Self drilling screw


JT3-FR-2H Plus-5,5 x L JT6-FR-2H Plus-5,5 x L

with undercut, round head with Torx® drive system and sealing washer ≥ Ø11 mm

Page 51 of European technical approval ETA-10/0200 of 27 June 2013

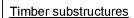
English translation prepared by DIBt

Materials

Fastener: stainless steel (1.4301) - EN 10088,

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) - EN 10088


Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

S280GD, S320GD or S350GD - EN 10346

Drilling capacity

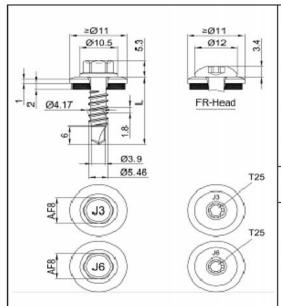
 $\Sigma t_i \leq 3,50 \text{ mm}$

no performance determined

t _{N,II}	[m m]	2 × 0,63	2 x 0,75	2 x 0,88	2 x 1,00	2 x 1,13	2 x 1,25
	1 _{t,nom}	2 Nm	3 N	lm		4 Nm	
	0,40	_	_	_	_	_	_
	0,50	_	_	_	_	_	_
l -	0,55	_	_	_	_	_	_
<u> </u>	0,63	1,65	1,78	1,91	2,04	2,04	2,04
Ţ.	0,75	1,65	2,60	2,76	2,92	2,92	2,92
Į.	0,88	1,65	2,60	3,39	3,55	3,55	3,55
Z	1,00	1,65	2,60	3,39	4,17	4,17	4,17
V _{R,k} [kN] for t _{N,I} [mm]	1,13	1,65	2,60	3,39	4,17	4,17	_
>	1,25	1,65	2,60	3,39	4,17	_	_
	1,50	1,65	2,60	3,39	4,17	_	_
	1,75	1,65	2,60	_	_	_	_
	0,40	0,86	0,86	0,86	0,86	0,86	0,86
	0,50	1,01	1,04	1,04	1,04	1,04	1,04
=	0,55	1,01	1,20	1,20	1,20	1,20	1,20
<u>Ē</u>	0,63	1,01	1,56	1,56	1,56	1,56	1,56
Ţ.	0,75	1,01	1,78	2,31	2,32	2,32	2,32
for	0,88	1,01	1,78	2,31	2,32	2,32	2,32
N _{R,k} [kN] for t _{N,I} [mm]	1,00	1,01	1,78	2,31	2,32	2,32	2,32
×	1,13	1,01	1,78	2,31	2,32	2,32	_
=	1,25	1,01	1,78	2,31	2,32	_	_
	1,50	1,01	1,78	2,31	2,32	_	_
	1,75	1,01	1,78	_			_

If both components I and II are made of S320GD or S350GD the values may be increased by 8,3%.

Self drilling screw


JT3-FR-2H Plus-5,5 x L JT6-FR-2H Plus-5,5 x L

with undercut, round head with Torx® drive system and sealing washer ≥ Ø11 mm

Annex 38

Z56763.13

Materials

Fastener: stainless steel (1.4301 / 1.4567) – EN 10088

stainless steel (1.4401 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

with vulcanised EPDM seal

Component I: aluminium alloy

with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Component II: aluminium alloy

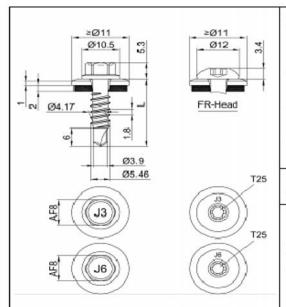
with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity $\Sigma t_i \leq 3,50 \text{ mm}$

Timber substructures

for timber substructures no performance determined

i .		0.4	_	0.5			_	_ ^ -					_	1 4 6		4.0		4.5	- ^
L t	_{I,II} =	0,4	0	0,5	0	0,6	0	0,7	0	0,8	0	0,9	0	1,0	00	1,2	20	1,5	00
M _t	nom =									_	-								
	0,40	0,19	-	0,19	-	0,19	-	0,19	-	0,19	-	0,19	-	0,19	ac	0,19	ac	0,19	ac
	0,50	0,19	-	0,27	-	0,32	-	0,37	-	0,43	-	0,48	-	0,53	ac	0,53	ac	0,53	ac
	0,60	0,19	-	0,27	-	0,38	-	0,44	-	0,49	-	0,55	-	0,61	-	0,63	-	0,76	ac
<u>;</u>	0,70	0,19	-	0,27	-	0,38	-	0,50	-	0,55	-	0,62	-	0,68	-	0,74	-	0,99	ac
j	0,80	0,19	-	0,27	-	0,38	-	0,50	-	0,61	-	0,69	-	0,76	-	0,84	-	1,22	ac
V _{R,k} for	0,90	0,19	-	0,27	-	0,38	-	0,50	-	0,61	-	0,76	-	0,83	-	0,95	-	1,34	-
^	1,00	0,19	-	0,27	-	0,38	-	0,50	-	0,61	-	0,76	-	0,91	-	1,05	-	1,47	-
	1,20	0,19	-	0,27	-	0,38	-	0,50	-	0,61	-	0,76	-	0,91	-	1,26	-	1,71	-
	1,50	0,19	-	0,27	-	0,38	-	0,50	-	0,61	-	0,76	-	0,91	-	1,26	-	2,08	-
N _{R,II,k} =		0,1	4	0,2	?1	0,2	8	0,3	6	0,4	.3	0,5	0	0,5	56	0,7	'3	0,9	91


Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

Sel	f_d	rill	ina	601	·ΔW
JUI	ı-u	1111	IIIu	SUI	EVV

JT3-2H Plus 5,5xL JT6-2H Plus 5,5xL JT3-FR-2H Plus 5,5xL JT6-FR-2H Plus 5,5xL

With hexagon head or FR-head and seal washer ≥ Ø 11,0 mm

Materials

Fastener: stainless steel (1.4301 / 1.4567) – EN 10088

stainless steel (1.4401 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

with vulcanised EPDM seal

Component I: aluminium alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: aluminium alloy

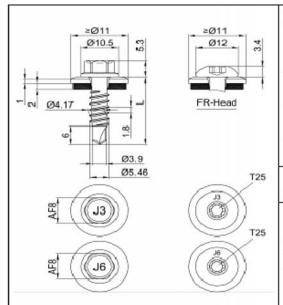
with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity $\Sigma t_i \leq 3,50 \text{ mm}$

Timber substructures

for timber substructures no performance determined

T _N	_{I,II} =	0,4	0	0,5	50	0,6	0	0,7	'0	0,8	0	0,9	0	1,0	0	1,2	20	1,5	50
M _{t,}	nom =									_	-								
	0,40	0,24	-	0,24	-	0,24	-	0,24	-	0,24	-	0,24	-	0,24	ac	0,24	ac	0,24	ac
	0,50	0,24	-	0,35	-	0,42	-	0,49	-	0,55	-	0,62	-	0,69	ac	0,69	ac	0,69	ac
Ш,	0,60	0,24	-	0,35	-	0,50	-	0,57	-	0,63	-	0,71	-	0,79	-	0,83	-	0,99	ac
	0,70	0,24	-	0,35	-	0,50	-	0,65	-	0,72	-	0,81	-	0,86	-	0,96	-	1,29	ac
وّ ا	0,80	0,24	-	0,38	-	0,50	-	0,65	-	0,80	-	0,90	-	0,93	-	1,08	-	1,59	ac
V _{R,k} for	0,90	0,24	-	0,38	-	0,50	-	0,65	-	0,80	-	0,99	-	1,00	-	1,23	-	1,75	-
_	1,00	0,24	-	0,38	-	0,50	-	0,65	-	0,80	-	0,99	-	1,18	-	1,37	-	1,91	-
	1,20	0,24	-	0,38	-	0,50	-	0,65	-	0,80	-	0,99	-	1,18	-	1,64	-	2,23	-
	1,50	0,24	-	0,38	-	0,50	-	0,65	-	0,80	-	0,99	-	1,18	-	1,64	-	2,71	-
N _{R,II,k} =		0,1	9	0,2	28	0,3	17	0,4	7	0,5	6	0,6	5	0,7	'3	0,9	15	1,1	19


Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

S ₀	lf_d	ril	lina	60	PO14
ъe	II-a	rII	ıına	SC	rew

JT3-2H Plus 5,5xL JT6-2H Plus 5,5xL JT3-FR-2H Plus 5,5xL JT6-FR-2H Plus 5,5xL

With hexagon head or FR-head and seal washer ≥ Ø 11,0 mm

Materials

Fastener: stainless steel (1.4301 / 1.4567) – EN 10088

stainless steel (1.4401 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

with vulcanised EPDM seal

Component I: aluminium alloy

with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Component II: S235 - EN 10025-1

S280GD, S320GD - EN 10346

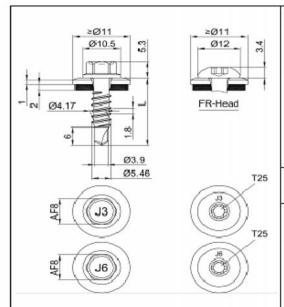
Drilling capacity $\Sigma t_i \leq 3,50 \text{ mm}$

Timber substructures

for timber substructures no performance determined

I			_						_		_								
	_{I,II} =	0,4	·U	0,5	U	0,6	3	0,7	5	0,8	8	1,0)U	1,2	25	1,5	U	2,0	טע
M _t ,	nom =									_	-								
	0,40	0,19	-	0,19	-	0,19	-	0,19	-	0,19	-	0,19	ac	0,19	ac	0,19	ac	0,19	ac
	0,50	0,35	-	0,35	-	0,35	-	0,40	-	0,47	-	0,53	ac	0,53	ac	0,53	ac	0,53	ac
Ш.,	0,60	0,35	-	0,42	-	0,42	-	0,47	-	0,54	-	0,61	-	0,69	-	0,76	ac	0,76	ac
<u>:</u>	0,70	0,35	-	0,42	-	0,49	-	0,53	-	0,61	-	0,68	-	0,84	-	0,99	ac	0,99	ac
قِ ا	0,80	0,35	-	0,42	-	0,49	-	0,56	-	0,66	-	0,76	-	0,99	-	1,22	ac	1,22	а
V _{R,k} for	0,90	0,35	-	0,42	-	0,49	-	0,56	-	0,70	-	0,83	-	1,03	-	1,34	-	1,34	-
^	1,00	0,35	-	0,42	-	0,49	-	0,56	-	0,74	-	0,91	-	1,19	-	1,47	-	1,47	-
	1,20	0,35	-	0,42	-	0,49	-	0,56	-	0,74	-	0,91	-	1,31	-	1,71	-	1,71	-
	1,50	0,35	-	0,42	-	0,49	-	0,56	-	0,74	-	0,91	-	1,50	-	2,08	-	2,08	-
NR,II,k =		0,3	0	0,4	ŀ1	0,5	6	0,7	'3	1,0	6	1,4	10	1,9	99	2,5	59	2,5	59

Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.


Component II of steel S320GD or S350GD: the indicated values of the pull-out resistance $N_{R,II,k}$ can be increased by 8,0%.

Sa	lf_d	Irill	lina	screw
ъe	II-O	ırıı	ıına	screw

JT3-2H Plus 5,5xL JT6-2H Plus 5,5xL JT3-FR-2H Plus 5,5xL JT6-FR-2H Plus 5,5xL

With hexagon head or FR-head and seal washer ≥ Ø 11,0 mm

Materials

Fastener: stainless steel (1.4301 / 1.4567) – EN 10088

stainless steel (1.4401 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

with vulcanised EPDM seal

Component I: aluminium alloy

with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Component II: S235 - EN 10025-1

S280GD, S320GD - EN 10346

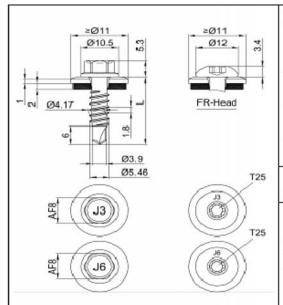
Drilling capacity $\Sigma t_i \leq 3,50 \text{ mm}$

Timber substructures

for timber substructures no performance determined

t _N	_{I,II} =	2x0,	63	2x0	,75	2x0	,88	2x1	,00	2x1	,13	2x1	,25
$M_{t,}$	nom =						-	_					
	0,40	0,58	-	0,58	ac								
	0,50	0,73	-	0,73	ac	0,74	ac	0,77	ac	0,77	ac	0,77	ac
ш	0,60	0,80	-	0,80	ac	0,87	ac	0,94	ac	0,94	ac	0,94	а
	0,70	0,87	-	0,87	ac	0,99	ac	1,12	ac	1,12	ac	1,12	а
V _{R,k} for t _{N,I}	0,80	0,94	-	0,94	ac	1,12	ac	1,29	а	1,29	а	1,29	а
/R,k	0,90	1,12	-	1,19	-	1,36	-	1,51	а	1,51	а	1,51	а
_	1,00	1,29	-	1,44	-	1,60	-	1,75	а	1,75	а	1,75	а
	1,20	1,29	-	1,51	-	1,74	-	1,96	а	1,96	а	-	-
	1,50	1,29	-	1,62	-	1,94	-	2,27	а	-	-	-	-
N _{R,II,k} =		1,0)1	1,7	78	2,3	31	2,8	34	2,8	34	2,8	34

Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.


Component II of steel S320GD or S350GD: the indicated values of the pull-out resistance $N_{R,II,k}$ can be increased by 8,0%.

0 -			•	
5e	іт-а	rIII	ına	screw

JT3-2H Plus 5,5xL JT6-2H Plus 5,5xL JT3-FR-2H Plus 5,5xL JT6-FR-2H Plus 5,5xL

With hexagon head or FR-head and seal washer ≥ Ø 11,0 mm

Materials

Fastener: stainless steel (1.4301 / 1.4567) – EN 10088

stainless steel (1.4401 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

with vulcanised EPDM seal

Component I: aluminium alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: S235 - EN 10025-1

S280GD, S320GD - EN 10346

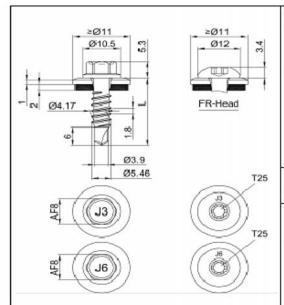
Drilling capacity $\Sigma t_i \leq 3,50 \text{ mm}$

Timber substructures

for timber substructures no performance determined

t,	N,II =	0,4	0	0,5	50	0,6	3	0,7	'5	0,8	8	1,0	00	1,2	25	1,5	50	2,0	00
M	,nom =			•		•		•		_	_	•							
	0,40	0,24	-	0,24	-	0,24	-	0,24	-	0,24	-	0,24	ac	0,24	ac	0,24	ac	0,24	ac
	0,50	0,46	-	0,46	-	0,46	-	0,53	-	0,61	-	0,69	ac	0,69	ac	0,69	ac	0,69	ac
Ш.,	0,60	0,46	-	0,55	-	0,55	-	0,60	-	0,70	-	0,79	-	0,89	-	0,99	ac	0,99	ac
<u>;</u>	0,70	0,46	-	0,55	-	0,64	-	0,69	-	0,78	-	0,86	-	1,08	-	1,29	ac	1,29	ac
j	0,80	0,46	-	0,55	-	0,64	-	0,73	-	0,83	-	0,93	-	1,26	-	1,59	ac	1,59	а
V _{R,k} for	0,90	0,46	-	0,55	-	0,64	-	0,73	-	0,87	-	1,00	-	1,38	-	1,75	-	1,75	-
^	1,00	0,46	-	0,55	-	0,64	-	0,73	-	0,96	-	1,18	-	1,55	-	1,91	-	1,91	-
	1,20	0,46	-	0,55	-	0,64	-	0,73	-	0,96	-	1,18	-	1,71	-	2,23	-	2,23	-
	1,50	0,46	-	0,55	-	0,64	-	0,73	-	0,96	-	1,18	-	1,95	-	2,71	-	2,71	-
N _{R,II,k} =		0,3	0	0,4	! 1	0,5	6	0,7	'3	1,0	6	1,4	1 0	1,9	99	2,5	i9	2,5	59

Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.


Component II of steel S320GD or S350GD: the indicated values of the pull-out resistance $N_{R,II,k}$ can be increased by 8,0%.

C^	lf_d	rill	ina	screw
ъe	II-a	ırııı	ma	screw

JT3-2H Plus 5,5xL JT6-2H Plus 5,5xL JT3-FR-2H Plus 5,5xL JT6-FR-2H Plus 5,5xL

With hexagon head or FR-head and seal washer ≥ Ø 11,0 mm

Materials

Fastener: stainless steel (1.4301 / 1.4567) – EN 10088

stainless steel (1.4401 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

with vulcanised EPDM seal

Component I: aluminium alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: S235 - EN 10025-1

S280GD, S320GD - EN 10346

Drilling capacity $\Sigma t_i \leq 3,50 \text{ mm}$

Timber substructures

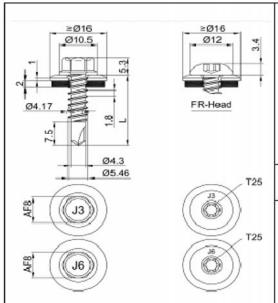
for timber substructures no performance determined

t _N	_{I,II} =	2x0,	63	2x0	,75	2x0	,88	2x1	,00	2x1	,13	2x1	,25
M _{t,}	nom =						-	_					
	0,40	0,77	-	0,77	ac								
	0,50	0,96	-	0,97	ac	0,99	ac	1,00	ac	1,00	ac	1,00	ac
	0,60	1,05	-	1,06	ac	1,15	ac	1,23	ac	1,23	ac	1,23	а
	0,70	1,14	-	1,14	ac	1,30	ac	1,46	ac	1,46	а	1,46	а
Į.	0,80	1,23	-	1,23	ac	1,46	ac	1,68	а	1,68	а	1,68	а
V _{R,k} for t _{N,I}	0,90	1,46	-	1,56	-	1,77	-	1,98	а	1,98	а	1,98	а
^	1,00	1,68	-	1,88	-	2,08	-	2,28	а	2,28	а	2,28	а
	1,20	1,68	-	1,97	-	2,26	-	2,55	а	2,55	а	-	-
	1,50	1,68	-	2,11	-	2,53	-	2,96	а	-	-	-	-
N _{R,II,k} =		1,0	1	1,7	78	2,3	31	2,8	34	2,8	34	2,8	34

Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

Component II of steel S320GD or S350GD: the indicated values of the pull-out resistance $N_{R,II,k}$ can be increased by 8,0%.

0 -			•	
5e	іт-а	rIII	ına	screw


JT3-2H Plus 5,5xL JT6-2H Plus 5,5xL JT3-FR-2H Plus 5,5xL JT6-FR-2H Plus 5,5xL

With hexagon head or FR-head and seal washer ≥ Ø 11,0 mm

Page 58 of European technical approval ETA-10/0200 of 27 June 2013

English translation prepared by DIBt

Materials

Fastener: stainless steel (1.4301 / 1.4567) – EN 10088

stainless steel (1.4401 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

with vulcanised EPDM seal

Component I: aluminium alloy

with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Component II: aluminium alloy

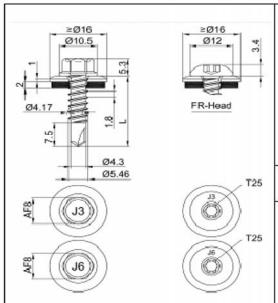
with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity $\Sigma t_i \le 4,20 \text{ mm}$

Timber substructures

for timber substructures no performance determined

	t _N	, _{II} =	1,5	50	2,0	00	2,	50	3,00	
	M _{t,r}	ıom =				-	_			
Г		0,50	0,77	ac	0,77	ac	0,77	abcd	0,77	abcd
		0,60	0,84	-	0,96	ac	0,96	ac	0,96	ac
	п	0,70	0,92	-	1,15	-	1,15	ac	1,15	а
	VR,k for t _{N,1} =	0,80	1,07	-	1,23	-	1,30	-	1,30	а
Ι,	وّ	0,90	1,19	-	1,34	-	1,46	-	1,50	-
١.	, R,	1,00	1,30	-	1,46	-	1,61	-	1,69	-
'	_	1,20	1,53	-	1,69	-	1,84	-	2,00	-
		1,50	2,15	-	2,23	-	2,30	-	-	-
		2,00	2,15	-	2,23	-	-	-	-	-
	N _{R,II,k} =		0,69		1,07		1,61		2,15	


Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

Sa	lf_d	rilli	ina	screw
Эe	II-u	rm	ma	Screw

JT3-3-5,5xL JT6-3-5,5xL JT3-FR-3-5,5xL JT6-FR-3-5,5xL

With hexagon head or FR-head and seal washer ≥ Ø 16 mm

Materials

Fastener: stainless steel (1.4301 / 1.4567) – EN 10088

stainless steel (1.4401 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

with vulcanised EPDM seal

Component I: aluminium alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

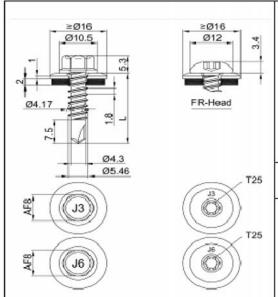
Component II: aluminium alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity $\Sigma t_i \le 4,20 \text{ mm}$

Timber substructures

for timber substructures no performance determined


t _N	, _{II} =	1,50		2,0	2,00		50	3,00	
M _{t,r}	nom =	_							
	0,50	1,00	ac	1,00	ac	1,00	abcd	1,00	abcd
	0,60	1,10	-	1,25	ac	1,25	ac	1,25	ac
۱.,	0,70	1,20	-	1,50	-	1,50	ac	1,50	а
V _{R,k} for t _{N,I} =	0,80	1,40	-	1,60	-	1,70	-	1,70	а
õ	0,90	1,55	-	1,75	-	1,90	-	1,95	-
Ä,	1,00	1,70	-	1,90	-	2,10	-	2,20	-
_	1,20	2,00	-	2,20	-	2,40	-	2,60	-
	1,50	2,80	-	2,90	-	3,00	-	-	-
	2,00	2,80	-	2,90	-	-	-	-	-
N _{R,II,k} =		0,9	90	1,4	10	2,	10	2,	80

Self-drilling screw

JT3-3-5,5xL JT6-3-5,5xL JT3-FR-3-5,5xL JT6-FR-3-5,5xL

With hexagon head or FR-head and seal washer $\geq \emptyset$ 16 mm

Materials

Fastener: stainless steel (1.4301 / 1.4567) – EN 10088

stainless steel (1.4401 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

with vulcanised EPDM seal

Component I: aluminium alloy

with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Component II: S235 - EN 10025-1

S280GD, S320GD - EN 10346

Drilling capacity $\Sigma t_i \leq 3,50 \text{ mm}$

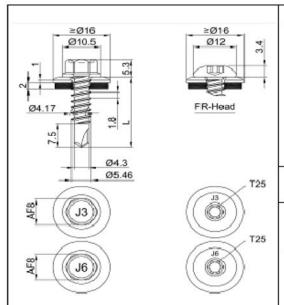
Timber substructures

for timber substructures no performance determined

t _N	, _{II} =	1,5	50	2,0	00	2,50		
M _{t,r}	nom =							
	0,50	0,77	ac	0,77	ac	0,77	abcd	
	0,60	0,84	-	0,96	ac	0,96	а	
ш	0,70	0,92	-	1,15	-	1,15	а	
	0,80	1,07	-	1,23	-	1,30	-	
Į.	0,90	1,19	-	1,34	-	1,46	-	
V _{R,k} for t _{N,I}	1,00	1,30	-	1,46	-	1,61	-	
_	1,20	1,53	-	1,69	-	1,84	-	
	1,50	2,15	-	2,23	-	2,30	-	
	2,00	2,15	-	2,23	-	-	-	
NR,II,k =		2,0	00	2,9	90	3,90		

Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

Sa	lf_d	rill	ina	screw
Эe	II-a	ruu	ma	Screw


JT3-3-5,5xL JT6-3-5,5xL JT6-FR-3-5,5xL

With hexagon head or FR-head and seal washer $\geq \emptyset$ 16,0 mm

Page 61 of European technical approval ETA-10/0200 of 27 June 2013

English translation prepared by DIBt

Materials

Fastener: stainless steel (1.4301 / 1.4567) – EN 10088

stainless steel (1.4401 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

with vulcanised EPDM seal

Component I: aluminium alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: S235 - EN 10025-1

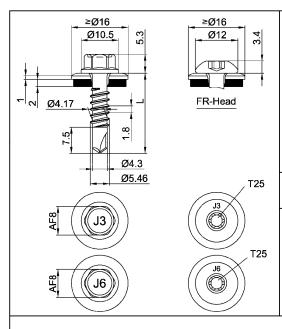
S280GD, S320GD - EN 10346

Drilling capacity $\Sigma t_i \leq 3,50 \text{ mm}$

Timber substructures

for timber substructures no performance determined

t _N	, _{II} =	1,5	50	2,0	00	2,50		
$M_{t,r}$	nom =							
	0,50	1,00	ac	1,00	ac	1,00	abcd	
	0,60	1,10	-	1,25	ac	1,25	а	
п	0,70	1,20	-	1,50	-	1,50	а	
V _{R,k} for t _{N,I} =	0,80	1,40	-	1,60	-	1,70	-	
for	0,90	1,55	-	1,75	-	1,90	-	
/R,k	1,00	1,70	-	1,90	-	2,10	-	
_	1,20	2,00	-	2,20	-	2,40	-	
	1,50	2,80	-	2,90	-	3,00	-	
	2,00	2,80	-	2,90	-	-	-	
N _{R,II,k} =		2,0	00	2,9	90	3,90		


Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

Cal	14 ~1	ω: H	:~~	scr	~
Эei	II-u	T III	ma	SCI	ew.

JT3-3-5,5xL JT6-3-5,5xL JT3-FR-3-5,5xL JT6-FR-3-5,5xL

With hexagon head or FR-head and seal washer $\geq \emptyset$ 16,0 mm

Materials

Fastener: stainless steel (1.4301) - EN 10088,

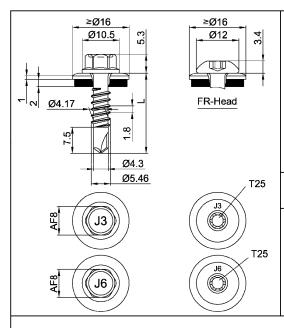
stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346 Component II: S280GD, S320GD or S350GD - EN 10346

Drilling capacity $\Sigma t_i \le 3,50 \text{ mm}$

Timber substructures


no performance determined

t _{N,II}	[m m]	2 x 0,63 2 x 0,75				2 x 0	,88,	2 x 1	,00	2 x 1	,13	2 x 1	,25	2 x 1	,50	2 x 1	1,75
IV	$1_{\rm t,nom}$	_	-						5 N	l m						_	-
	0,50	_	_	_	_	_	_	_	_	—	_	_	_	_	_	_	_
	0,55	_	_	l —	_	l —	_	l —	_	l —	_	l —	_	—	_	_	_
-	0,63	_	_	1,60	_	1,60	_	1,60	_	1,60	_	1,60	_	—	_	_	_
<u> </u>	0,75	_	_	1,90	_	1,90	_	1,90	_	1,90	_	1,90	_	—	_	_	_
<u>z</u>	0,88	_	_	2,20	_	2,20	_	2,20	_	2,20	_	2,20	_	—	_	_	_
و	1,00	_	_	2,50	_	2,50		2,50		2,50	_	2,50	_	—	_	_	_
ΙZ	1,13	_	_	2,50	_	2,50	_	2,50		2,50	_	—	_	—	_	_	_
V _{R,k} [kN] for t _{N,I} [mm]	1,25	_	_	2,50	_	2,50	_	2,50	_	2,50	_	l —	_	l —	_	_	_
> ~	1,50	_	_	2,50	_	2,50	_	2,50	_	l —	_	_	_	_	_	_	_
	1,75	_	_	2,50	_	_	_	l —	_	l —	_	_	_	l —	_	_	_
	2,00	_	_	2,50	_	_	_	_	_	l —	_	_	_	_	_	_	_
	0,50	_	_	0,81	_	0,97	_	1,19	_	1,51	_	1,62	_	1,62	_	_	_
	0,55	_	_	1,02	_	1,23	_	1,50	_	1,91	_	2,05	_	—	_	_	_
1=	0,63	_	_	1,50	_	1,80	_	2,20	_	2,80	_	3,00	_	—	_	_	_
] =	0,75	_	_	1,50	_	1,80	_	2,20	_	2,80	_	3,20	_	—	_	_	_
Ţ.	0,88	_	_	1,50	_	1,80	_	2,20	_	2,80	_	3,20	_	l —	_	_	_
ρ	1,00	_	_	1,50	_	1,80	_	2,20		2,80	_	3,20	_	_	_	_	_
ΙĘ	1,13	_	_	1,50	_	1,80	_	2,20	_	2,80	_	_	_	l —	_	_	_
N _{R,k} [kN] for t _{N,I} [mm]	1,25	_	_	1,50	_	1,80		2,20		2,80		_		_	_	 —	_
ž	1,50	_	_	1,50	_	1,80	_	2,20	_	l —	_		_	_	_	_	_
	1,75	_	_	1,50	_	—	_	—	_	—	_	—	_	—	_	_	_
	2,00	_	_	1,50	_	—	_	_	_	—	_	_	_	_	_	_	_

Self drilling screw	
JT3-3H-5,5 x L JT6-3H-5.5 x L	
JT3-FR-3H-5,5 x L	Anı
JT6-FR-3H-5,5 x L	

with undercut, hexagon head or round head with Torx® drive system and sealing washer ≥ Ø16 mm

Materials

Fastener: stainless steel (1.4301) - EN 10088,

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235, S275 or S355 - EN 10025-1

S280GD, S320GD or S350GD - EN 10346

Drilling capacity $\Sigma t_i \le 3,50 \text{ mm}$

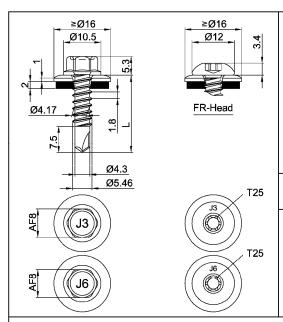
Timber substructures

no performance determined

t _{N,II}	[m m]	1,0	00	1,1	3	1,2	25	1,5	0	2,0	00	2,5	0	3,0	00	4,0	00
IV	$I_{\rm t,nom}$						5 Nm									-	
	0,50	_	_	_	_	_	_	_	_	—	_	I —	_	_	_	_	_
	0,55	l —	_	_	_	_	_	—	_	—	_	—	_	—	_	_	_
1=	0,63	1,40	_	1,50	_	1,60	ac	1,90	ac	2,30	ac	2,50	ac	—	_	_	_
<u>اق</u>	0,75	1,80	_	1,90	_	2,00	ac	2,20	ac	2,70	ac	3,20	а	_	_	_	_
Ξ̈́	0,88	2,20	_	2,30	_	2,50	_	2,70	_	3,30	_	3,70	а	—	_	_	_
for t _{N,I} [mm]	1,00	2,50	_	2,70	_	2,90	_	3,30	_	4,00	_	4,40	а	—	_	_	_
ΙZ	1,13	2,90	_	3,00	_	3,10	_	3,80	_	4,40	_	l —	_	—	_	_	_
V _{R,k} [kN]	1,25	3,40	_	3,50	_	3,80	_	4,20	_	5,00	_	l —	_	—	_	_	_
5	1,50	4,10	_	4,40	_	4,70	_	5,30	_	5,80	_	l —	_	—	_	_	_
	1,75	4,10	_	4,40	_	4,70	_	5,30	_	l —	_	l —	_	—	_	_	_
	2,00	4,10	_	4,40	_	4,70	_	5,30	_	—	_	l —	_	—	_	_	_
	0,50	0,59	_	0,76	_	0,81	ac	1,08	ac	1,57	ac	1,62	ac	1,62	ac	_	_
	0,55	0,75	_	0,95	_	1,02	ac	1,36	ac	1,98	ac	2,05	ac	_	_	_	_
=	0,63	1,10	_	1,40	_	1,50	ac	2,00	ac	2,90	ac	3,00	ac	—	_	_	_
<u> </u>	0,75	1,10	_	1,40	_	1,50	ac	2,00	ac	2,90	ac	3,90	а	—	_	_	_
Ţ.	0,88	1,10	_	1,40	_	1,50	_	2,00	_	2,90	_	3,90	а	—	_	_	_
ξ	1,00	1,10	_	1,40	_	1,50	_	2,00	_	2,90	_	3,90	а	—	_	_	_
ΙĘ	1,13	1,10	_	1,40	_	1,50	_	2,00	_	2,90	_	l —	_	—	_	_	_
N _{R,k} [kN] for t _{N,I} [mm]	1,25	1,10	_	1,40	_	1,50	_	2,00	_	2,90	_	—	_	—	_	—	_
±	1,50	1,10	_	1,40	_	1,50	_	2,00	_	2,90	_	—	_	—	_	_	_
	1,75	1,10	_	1,40	_	1,50	_	2,00	_	—	_	—	_	—	_	—	_
	2,00	1,10	_	1,40	_	1,50	_	2,00	_	—	_	_	_	_	_	l —	_

JT3-3H-5,5 x L JT6-3H-5,5 x L

JT3-FR-3H-5,5 x L


JT6-FR-3H-5,5 x L

with undercut, hexagon head or round head with Torx® drive system and sealing washer ≥ Ø16 mm

Page 64 of European technical approval ETA-10/0200 of 27 June 2013

English translation prepared by DIBt

Materials

Fastener: stainless steel (1.4301) - EN 10088,

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

S280GD, S320GD or S350GD - EN 10346

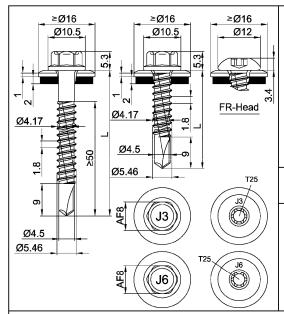
Drilling capacity $\Sigma t_i \le 3,50 \text{ mm}$

Timber substructures

no performance determined

,	[m m]	1,0	0	1,1	3	1,2	25	1,5		2,0	0	2,5	0	3,0	00	4,0	00
IV	t,nom							7 N	m							_	_
	0,50	_	_	_	_	-	_	-	_	—	_	-	_	_	_	_	_
	0,55	_	_	—	_	-	_	—	_	—	_	—	_	l —	_	—	_
Ī≡	0,63	1,40	_	1,40	_	1,70	_	2,00	_	2,50	ac	2,70	ac	l —	_	—	_
<u> </u>	0,75	1,80	_	1,80	_	2,20	_	2,40	_	3,00	_	3,50	а	—	_	—	_
Ţ.	0,88	2,10		2,10		2,50		2,90		3,30	_	3,60	а	_	_	—	_
for	1,00	2,50	_	2,50	_	2,90	_	3,20	_	4,00	_	4,40	а		_	—	_
ΙZ	1,13	2,90	_	2,90	_	3,10	_	3,80	_	4,40	_	_	_	_	_	—	_
V _{R,k} [kN] for t _{N,I} [mm]	1,25	3,40	_	3,40	_	3,80	_	4,20	_	5,00	_	_	_	_	_	—	_
>	1,50	4,10	_	4,10	_	4,70	_	5,30	_	5,80	_	l —	_	_	_	—	_
	1,75	4,10	_	4,10	_	4,70	_	5,30	_	l —	_	_	_	_	_	—	_
	2,00	4,10	_	4,10	_	4,70	_	5,30	_	—	_	l —	_	_	_	—	_
	0,50	0,59	_	0,59	_	0,81	_	1,08	_	1,57	ac	1,62	ac	1,62	ac	_	_
	0,55	0,75	_	0,75	—	1,02	_	1,36	_	1,98	ac	2,05	ac	_	_	—	_
lᡓ	0,63	1,10	_	1,10	_	1,50	_	2,00	_	2,90	ac	3,00	ac	_	_	—	_
直	0,75	1,10	_	1,10	_	1,50	_	2,00	_	2,90	_	3,90	а	—	_	—	_
Ţ.	0,88	1,10	_	1,10	_	1,50	_	2,00	_	2,90	_	3,90	а	l —	_	—	_
ξį	1,00	1,10	_	1,10	_	1,50	_	2,00	_	2,90	_	3,90	а	_	_	—	_
N _{R,k} [kN] for t _{N,I} [mm]	1,13	1,10	_	1,10	_	1,50	_	2,00	_	2,90	_	—	_	—		—	_
🛬	1,25	1,10	_	1,10	_	1,50	_	2,00	_	2,90	_	—	_	—	_	—	_
ž	1,50	1,10	_	1,10	_	1,50	_	2,00		2,90	_	—	_	l —		—	_
	1,75	1,10	_	1,10	_	1,50	_	2,00	_	—	_	l —	_	l —	_	—	_
	2,00	1,10		1,10		1,50		2,00	_	<u> </u>	_	_	_	_		_	_

Self drilling so


JT3-3-5,5 x L JT6-3-5,5 x L

JT3-FR-3-5,5 x L

JT6-FR-3-5,5 x L

with hexagon head or round head with Torx® drive system and sealing washer ≥ Ø16 mm

Materials

Fastener: stainless steel (1.4301) - EN 10088,

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235, S275 or S355 - EN 10025-1

S280GD, S320GD or S350GD - EN 10346

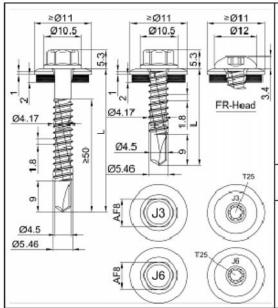
Drilling capacity $\Sigma t_i \le 6,00 \text{ mm}$

Timber substructures

no performance determined

t _{N,II}	[m m]	1,5	0	2,0	00	2,5	0	3,0	00	4,0	00	_	_	2 x 1	,50	_	- 1
IV	$1_{\rm t,nom}$					5 N	lm					_	-	5 N	lm	_	-
	0,50	_	_	_	_	_	_	_	_	—	_		_	_	_	_	-
	0,55	_	_	l —	_	_	_	l —	_	—	_	l —	_	_	_	_	-
1=	0,63	2,10	ac	2,40	ac	2,60	ac	2,90	ac	2,90	ac	—	_	2,40	ac	_	-
<u> </u>	0,75	2,50	_	2,80	ac	3,10	ac	3,30	ac	3,30	ac	—	_	3,10	ac	_	-
Ξ̈́	0,88	2,90	_	3,20	_	3,40	ac	3,70	ac	3,70	ac	—	_	3,70	ac	_	-
for t _{N,I} [mm]	1,00	3,10	_	3,40	_	4,00	_	4,20	ac	4,20	ac	—	_	3,70	_	_	-
	1,13	3,30	_	3,80	_	4,50	_	4,60	_	4,60	_	—	_	3,70	_	_	-
V _{R,k} [kN]	1,25	3,40	_	3,90	_	4,70	_	4,90	_	4,90	_	—	_	3,70	_	_	_
> =	1,50	3,80	_	4,40	_	5,00	_	5,50	_	5,50	_	—	_	3,70	_	_	_
	1,75	3,80	_	4,40	_	5,00	_	5,50	_	5,50	_	—	_	3,70	_	_	_
	2,00	3,80	_	4,40	_	5,00	_	5,50	_	5,50	_	—	_	3,70		_	_
	0,50	0,92	ac	1,30	ac	1,30	ac	1,30	ac	1,30	ac	_	_	1,30	ac	_	_
	0,55	1,16	ac	1,64	ac	1,64	ac	1,64	ac	1,64	ac	—	_	1,64	ac	_	-
1=	0,63	1,70	ac	2,40	ac	2,40	ac	2,40	ac	2,40	ac	—	_	2,40	ac	_	-
ΙĒ	0,75	1,70	_	2,60	ac	2,90	ac	2,90	ac	2,90	ac	—	_	2,70	ac	_	_
<u> </u>	0,88	1,70	_	2,60	_	3,50	ac	3,50	ac	3,50	ac	—	_	2,70	ac	_	_
ρ	1,00	1,70	_	2,60	_	3,50	_	4,10	ac	4,10	ac	—	_	2,70	_	_	_
ΙĘ	1,13	1,70	_	2,60	_	3,50	_	4,10	_	4,10	_		_	2,70	_	_	_
N _{R,k} [kN] for t _{N,I} [mm]	1,25	1,70	_	2,60	_	3,50	_	4,10	_	4,10	_	—	_	2,70	_	_	_
ا ع	1,50	1,70		2,60		3,50		4,50	_	4,50		—	_	2,70	_	_	_
	1,75	1,70	_	2,60	_	3,50	_	4,50	_	4,50	_	—	_	2,70	_	_	_
	2,00	1,70	_	2,60	_	3,50	_	4,50	_	4,50	_	—	_	2,70	_	—	_

	Self drilling screw
	JT3-6-5,5 x L
Annex 52	JT6-6-5,5 x L JT3-FR-6-5 5 x L


with hexagon head or round head with Torx® drive system and sealing washer ≥

Ø16 mm

JT6-FR-6-5,5 x L

Z56763.13

Materials

Fastener: stainless steel (1.4301 / 1.4567) – EN 10088

stainless steel (1.4401 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

with vulcanised EPDM seal

Component I: aluminium alloy

with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Component II: aluminium alloy

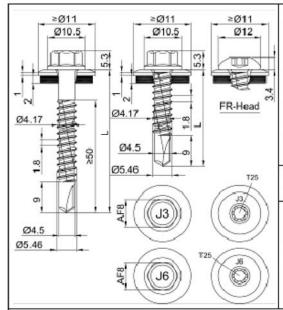
with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity $\Sigma t_i \le 6,50 \text{ mm}$

Timber substructures

for timber substructures no performance determined

t _N	, _{II} =	2,0	0	2,5	50	3,0	0	4,0	0
M _{t,r}	nom =				-	_			
	0,50	0,71	ac	0,71	ac	0,71	ac	0,71	ac
	0,60	0,89	ac	0,91	ac	0,93	ac	0,93	ac
۱,	0,70	1,07	ac	1,11	ac	1,15	ac	1,15	ac
<u> </u>	0,80	1,25	ac	1,31	ac	1,36	ac	1,36	ac
V _{R,k} for t _{N,I} =	0,90	1,43	ac	1,51	ac	1,58	ac	1,58	ac
/A,R	1,00	1,61	ac	1,71	ac	1,80	ac	1,80	ac
_	1,20	1,80	-	1,93	-	2,06	-	2,17	ac
	1,50	2,09	-	2,27	-	2,45	-	2,72	а
	2,00		-	2,83	-	3,10	-	3,63	а
N _{R,II,k} =		1,03		1,6	88	2,3	33	3,63	


Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

Ca	If A	vill	ina	screw	
ъe	п-о	Iriii	ma	screw	

JT3-6-5,5xL JT6-6-5,5xL JT6-FR-6-5,5xL

With hexagon head or FR-head and seal washer $\geq \emptyset$ 11,0 mm

Materials

Fastener: stainless steel (1.4301 / 1.4567) – EN 10088

stainless steel (1.4401 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

with vulcanised EPDM seal

Component I: aluminium alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: aluminium alloy

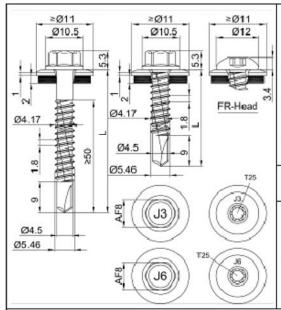
with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity $\Sigma t_i \le 6,50 \text{ mm}$

Timber substructures

for timber substructures no performance determined

t _N	, _{II} =	2,0	00	2,5	0	3,0	0	4,0	0
$M_{t,r}$	nom =				-	_			
	0,50	0,93	ac	0,93,	ac	0,93	ac	0,93	ac
	0,60	1,16	ac	1,19	ac	1,21	ac	1,21	ac
п	0,70	1,39	ac	1,45	ac	1,50	ac	1,50	ac
	0,80	1,63	ac	1,70	ac	1,78	ac	1,78	ac
V _{R,k} for t _{N,I}	0,90	1,86	ac	1,96	ac	2,07	ac	2,07	ac
, X,	1,00	2,09	ac	2,22	ac	2,35	ac	2,35	ac
	1,20	2,34	-	2,51	-	2,69	-	2,72	ac
	1,50	2,71	-	2,95	-	3,19	-	3,48	а
	2,00	3,33	-	3,68	-	4,03	-	4,73	а
NR,II,k =		1,35		2,2	20	3,0)4	4,73	


Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

Self-d	Irillina	screw
--------	----------	-------

JT3-6-5,5xL JT6-6-5,5xL JT6-FR-6-5,5xL

With hexagon head or FR-head and seal washer $\geq \varnothing$ 11,0 mm

Materials

Fastener: stainless steel (1.4301 / 1.4567) – EN 10088

stainless steel (1.4401 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

with vulcanised EPDM seal

Component I: aluminium alloy

with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Component II: S235 - EN 10025-1

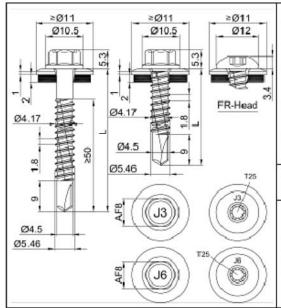
S280GD, S320GD - EN 10346

<u>Drilling capacity</u> $\Sigma t_i \le 6,50 \text{ mm}$

Timber substructures

for timber substructures no performance determined

t,	_{I,II} =	1,5	50	1,7	7 5	2,0	00	2,5	50	3,0	0	4,0	00		-	2x1	,50
M _t	M _{t,nom} = — —																
	0,50	0,71	ac	0,71	ac	0,71	ac	0,71	ac	0,71	ac	0,71	ac	-	-	0,71	ac
	0,60	0,91	ac	0,91	ac	0,91	ac	0,92	ac	0,93	ac	0,93	ac	-	-	0,91	ac
1 11	0,70	1,10	ac	1,11	ac	1,12	ac	1,13	ac	1,15	ac	1,15	ac	-	-	1,10	ac
Z.	0,80	1,30	ac	1,31	ac	1,32	ac	1,34	ac	1,36	ac	1,36	ac	-	-	1,30	ac
وا	0,90	1,49	ac	1,51	ac	1,53	ac	1,55	ac	1,58	ac	1,58	ac	-	-	1,49	ac
V _{R,k} for	1,00	1,69	ac	1,71	ac	1,73	ac	1,76	ac	1,80	ac	1,80	ac	-	-	1,69	ac
_	1,20	1,69	-	1,79	-	1,90	-	1,97	-	2,06	-	2,17	ac	-	-	1,69	-
	1,50	1,69	-	1,92	-	2,15	-	2,30	-	2,45	-	2,72	а	-	-	1,69	-
	2,00	1,69	-	2,13	-	2,56	-	2,83	-	3,10	-	3,63	а	-	-	1,69	-
N.i.;x		1,70		2,15		2,60		3,50		4,50		4,50		-		2,7	70


Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

Self-drilling scr	ew
-------------------	----

JT3-6-5,5xL JT6-6-5,5xL JT3-FR-6-5,5xL JT6-FR-6-5,5xL

With hexagon head or FR-head and seal washer $\geq \varnothing$ 11,0 mm

Materials

Fastener: stainless steel (1.4301 / 1.4567) – EN 10088

stainless steel (1.4401 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

with vulcanised EPDM seal

Component I: aluminium alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

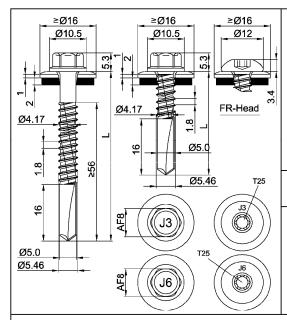
Component II: S235 - EN 10025-1

S280GD, S320GD - EN 10346

<u>Drilling capacity</u> $\Sigma t_i \le 6,50 \text{ mm}$

Timber substructures

for timber substructures no performance determined


t _N	, _{II} =	1,5	50	1,7	7 5	2,0	0	2,5	50	3,0	0	4,0	00		-	2x1	,50
$M_{t,}$	M _{t,nom} = ———————————————————————————————————																
	0,50	0,93	ac	0,93	ac	0,93	ac	0,93	ac	0,93	ac	0,93	ac	-	-	0,93	ac
	0,60	1,18	ac	1,19	ac	1,19	ac	1,20	ac	1,21	ac	1,21	ac	-	-	1,18	ac
1 11	0,70	1,44	ac	1,45	ac	1,46	ac	1,48	ac	1,50	ac	1,50	ac	-	-	1,44	ac
z Z	0,80	1,69	ac	1,71	ac	1,72	ac	1,75	ac	1,78	ac	1,78	ac	-	-	1,69	ac
وَ	0,90	1,95	ac	1,97	ac	1,99	ac	2,03	ac	2,07	ac	2,07	ac	-	-	1,95	ac
V _{R,k} for	1,00	2,20	ac	2,23	ac	2,25	ac	2,30	ac	2,35	ac	2,35	ac	-	-	2,20	ac
_	1,20	2,20	-	2,32	-	2,45	-	2,58	-	2,69	-	2,72	ac	-	-	2,20	-
	1,50	2,20	-	2,45	-	2,79	-	2,99	-	3,19	-	3,48	а	-	-	2,20	-
	2,00	2,20	-	2,67	-	3,33	-	3,68	-	4,03	-	4,73	а	-	-	2,20	-
N _{B,II,k} =		1,70		2,15		2,60		3,50		4,50		4,50		-		2,7	70
ž '											4,00		1,00				

Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

JT3-6-5,5xL JT6-6-5,5xL JT3-FR-6-5,5xL JT6-FR-6-5,5xL

With hexagon head or FR-head and seal washer $\geq \varnothing$ 11,0 mm

Materials

Fastener: stainless steel (1.4301) - EN 10088,

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

Component I: S280GD - EN 10346

Component II: S235, S275 or S355 - EN 10025-1

Drilling capacity $\Sigma t_i \le 13,00 \text{ mm}$

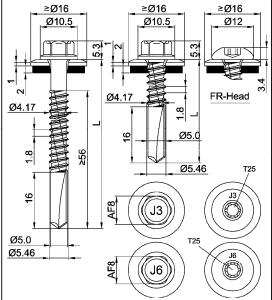
Timber substructures

no performance determined

t _{N,II}	[m m]	4,0	0	5,0	0	6,0	0	8,0	0	10	,0	12	,0	13	,0	14	۰,0
IV	$M_{t,nom}$					7 Nm							_		_		
	0,50	_	_	-	_	—	_	_	_	_	_	_	_	-	_	_	_
	0,55	_	_	—	_	—	_	—	_	 —	_	 —	_	—	_	—	_
1=	0,63	2,20	ac	2,20	ac	2,20	ac	2,20	ac	2,20	ac	2,20	ac	—	_	—	_
<u> </u>	0,75	2,80	ac	2,80	ac	2,80	ac	2,80	ac	2,80	ac	2,80	ac	—	_	—	_
Ţ.	0,88	3,50	ac	3,50	ac	3,50	ac	3,50	ac	3,50	ac	3,50	а	—	_	—	_
for	1,00	4,20	_	4,20	ac	4,20	ac	4,20	ac	4,20	ac	4,20	а	—	_	—	_
ΙZ	1,13	4,20	_	4,90	_	4,90	_	4,90	_	4,90	_	l —	_	—	_	—	_
V _{R,k} [kN] for t _{N,I} [mm]	1,25	4,20	_	5,60	_	5,60	_	5,60	_	5,60	_	l —	_	—	_	—	_
5	1,50	4,20	_	6,40	_	7,20	_	7,20	_	7,20	_	l —	_	—	_	—	_
	1,75	4,20	_	6,40	_	7,20	_	7,20	_	7,20	_	l —	_	—	_	—	_
	2,00	4,20	_	6,40	_	7,20	_	7,20	_	7,20	_	l —	_	—	_	—	_
	0,50	1,30	ac	1,30	ac	1,30	ac	1,30	ac	1,30	ac	1,30	ac	_	_	_	_
	0,55	1,64	ac	1,64	ac	1,64	ac	1,64	ac	1,64	ac	1,64	ac	—	_	—	_
=	0,63	2,40	ac	2,40	ac	2,40	ac	2,40	ac	2,40	ac	2,40	ac	—	_	—	_
<u>Ē</u>	0,75	3,10	ac	3,10	ac	3,10	ac	3,10	ac	3,10	ac	3,10	ac	—	_	—	_
for t _{N,I} [mm]	0,88	3,90	ac	3,90	ac	3,90	ac	3,90	ac	3,90	ac	3,90	а	—	_	—	_
for	1,00	4,70	_	4,70	ac	4,70	ac	4,70	ac	4,70	ac	4,70	а	—	_	—	_
	1,13	4,70	_	5,60	_	5,60	_	5,60	_	5,60	_	—	_	—	_	—	_
N _{R,k} [kN]	1,25	4,70	_	6,40	_	6,40	_	6,40	_	6,40	_	—	_	—	_	—	_
۱ź	1,50	4,70	_	6,40		6,40		6,40	_	6,40		—	_	_	_	_	_
	1,75	4,70	_	6,40	_	6,40	_	6,40	_	6,40	_	l —	_	—	_	—	_
	2,00	4,70	_	6,40	_	6,40	_	6,40	_	6,40	_	—	_	_	_	_	_

Se	lf c	Iril	ling	screw
----	------	------	------	-------

JT3-12-5,5 x L


JT6-12-5,5 x L JT3-FR-12-5,5 x L

JT6-FR-12-5,5 x L

with hexagon head or round head with Torx® drive system and sealing washer ≥ Ø16 mm

Annex 57

<u>Materials</u>

Fastener: stainless steel (1.4301) - EN 10088,

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

Component I: S320GD or S350GD - EN 10346

Component II: S235, S275 or S355 - EN 10025-1

 $\underline{\text{Drilling capacity}} \qquad \qquad \Sigma t_i \leq 13,00 \text{ mm}$

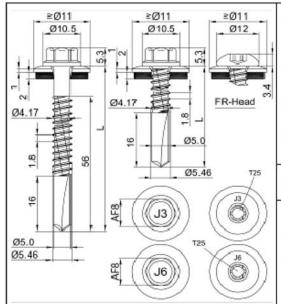
Timber substructures

no performance determined

t _{N,II}	[m m]	4,0	0	5,0	0	6,0	0	8,0	0	10	,0	12	,0	13	,0	14	,0
N	$M_{t,nom}$						7 Nm							_		_	
	0,50	_	_	—	_	_	_	-	_	-	_	-	_		_	_	_
	0,55	_	_	l —	_	_	_	—	_	—	_	—	_	_	_	—	_
-	0,63	2,50	ac	2,50	ac	2,50	ac	2,50	ac	2,50	ac	2,50	_	_	_	—	_
<u> </u>	0,75	3,20	ac	3,20	ac	3,20	ac	3,20	ac	3,20	ac	3,20	_	_	_	—	_
<u>z</u>	0,88	3,90	ac	3,90	ac	3,90	ac	3,90	ac	3,90	ac	3,90	_	_	_	—	_
و	1,00	4,20	_	4,60	ac	4,60	ac	4,60	ac	4,60	ac	4,60	_	_	_	_	_
V _{R,k} [kN] for t _{N,I} [mm]	1,13	4,20	_	5,30	_	5,30	_	5,30	_	5,30	_	l —	_	_	_	—	_
*	1,25	4,20	_	6,00	_	6,00	_	6,00	_	6,00	_	l —	_	_	_	_	_
> ~	1,50	4,20	_	6,40	_	7,20	_	7,60	_	7,60	_	_	_	_	_	_	_
	1,75	4,20	_	6,40	_	7,20	_	7,60	_	7,60	_	_	_	_	_	_	_
	2,00	4,20		6,40	_	7,20		7,60	_	7,60	_	_	_	_	_	_	_
	0,50	1,40	ac	1,40	ac	1,40	ac	1,40	ac	1,40	ac	1,40	_	_	_	_	_
	0,55	1,77	ac	1,77	ac	1,77	ac	1,77	ac	1,77	ac	1,77	_	_	_	—	_
=	0,63	2,60	ac	2,60	ac	2,60	ac	2,60	ac	2,60	ac	2,60	_	_	_	—	_
ΙĒ	0,75	3,30	ac	3,30	ac	3,30	ac	3,30	ac	3,30	ac	3,30	_	_	_	—	_
Ţ,	0,88	4,20	ac	4,20	ac	4,20	ac	4,20	ac	4,20	ac	4,20	_	_	_	—	_
φ	1,00	4,70	_	5,00	ac	5,00	ac	5,00	ac	5,00	ac	5,00	_	_	_	—	_
N _{R,k} [kN] for t _{N,I} [mm]	1,13	4,70		6,00		6,00		6,00	_	6,00	_	_		_	_	_	_
*	1,25	4,70	_	6,90	_	6,90		6,90	_	6,90	_	_		_	_	_	_
ž	1,50	4,70	_	6,90	_	6,90	_	6,90	_	6,90	_		_	_	_	_	_
	1,75	4,70	_	6,90	_	6,90	_	6,90	_	6,90	_	—	_	_	_	—	_
	2,00	4,70	_	6,90	_	6,90	_	6,90	_	6,90	_		_		_	_	_

_							
Sel	lt.	М	rıl	lın	α	CC	rain/
		u	111		u	30	

JT3-12-5,5 x L


JT6-12-5,5 x L

JT3-FR-12-5,5 x L

JT6-FR-12-5,5 x L

with hexagon head or round head with Torx® drive system and sealing washer ≥ Ø16 mm

Materials

Fastener: stainless steel (1.4301 / 1.4567) – EN 10088

stainless steel (1.4401 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

with vulcanised EPDM seal

Component I: aluminium alloy

with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Component II: aluminium alloy

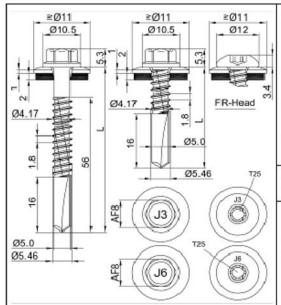
with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity $\Sigma t_i \leq 13,00 \text{ mm}$

Timber substructures

for timber substructures no performance determined

t _N	t _{N,II} =		4,00		5,00		6,00		8,00		10,00		00
$M_{t,i}$	nom =						-	_					
	0,50	0,77	ac	0,77	ac	0,77	ac	0,77	ac	0,77	ac	0,77	ac
	0,60	0,94	ac	0,94	ac	0,94	ac	0,94	ac	0,94	ac	0,94	а
	0,70	1,10	ac	1,10	ac	1,10	ac	1,10	ac	1,10	ac	1,10	а
Ţ,	0,80	1,27	ac	1,27	ac	1,27	ac	1,27	ac	1,27	ac	1,27	а
V _{R,k} for	0,90	1,48	ac	1,48	ac	1,48	ac	1,48	ac	1,48	ac	1,48	а
A,K	1,00	1,69	ac	1,69	ac	1,69	ac	1,69	ac	1,69	ac	1,69	а
_	1,20	1,94	-	1,94	-	1,94	-	1,94	ac	1,94	ac	-	
	1,50	2,32	-	2,32	-	2,32	-	2,32	ac	2,32	ac	-	
	2,00	2,91	-	3,00	-	3,09	-	3,26	ac	3,26	а	-	
N _{R,II,k} =	N _{B,II,k} =		1,11 1,58		2,21		3,48		3,48		3,48		


Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

Self-c	drilling	screw
--------	----------	-------

JT3-12-5,5xL JT6-12-5,5xL JT3-FR-12-5,5xL JT6-FR-12-5,5xL

With hexagon head or FR-head and seal washer $\geq \varnothing$ 11,0 mm

Materials

Fastener: stainless steel (1.4301 / 1.4567) – EN 10088

stainless steel (1.4401 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

with vulcanised EPDM seal

Component I: aluminium alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: aluminium alloy

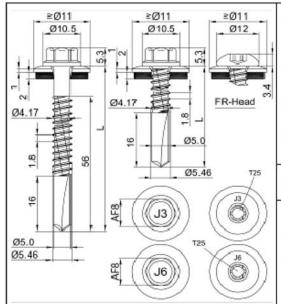
with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity $\Sigma t_i \leq 13,00 \text{ mm}$

Timber substructures

for timber substructures no performance determined

t _N	, _{II} =	4,0	00	5,0	0	6,0	0	8,0	00	10,	00	12,	00
$M_{t,i}$	nom =		_										
	0,50	1,00	ac	1,00	ac	1,00	ac	1,00	ac	1,00	ac	1,00	ac
	0,60	1,22	ac	1,22	ac	1,22	ac	1,22	ac	1,22	ac	1,22	а
	0,70	1,44	ac	1,44	ac	1,44	ac	1,44	ac	1,44	ac	1,44	а
ij	0,80	1,66	ac	1,66	ac	1,66	ac	1,66	ac	1,66	ac	1,66	а
V _{R,k} for	0,90	1,93	ac	1,93	ac	1,93	ac	1,93	ac	1,93	ac	1,93	а
A,K	1,00	2,20	ac	2,20	ac	2,20	ac	2,20	ac	2,20	ac	2,20	а
_	1,20	2,52	-	2,52	-	2,52	-	2,52	ac	2,52	ac	-	
	1,50	3,02	-	3,02	-	3,02	-	3,02	ac	3,02	ac	-	
	2,00	3,79	-	3,91	-	4,02	-	4,25	ac	4,25	а	-	
N _{R,II,k} =		1,∠	15	2,0)6	2,8	39	4,5	54	4,5	54	4,5	54


Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

Self-c	drilling	screw
--------	----------	-------

JT3-12-5,5xL JT6-12-5,5xL JT3-FR-12-5,5xL JT6-FR-12-5,5xL

With hexagon head or FR-head and seal washer $\geq \emptyset$ 11,0 mm

Materials

Fastener: stainless steel (1.4301 / 1.4567) – EN 10088

stainless steel (1.4401 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

with vulcanised EPDM seal

Component I: aluminium alloy

with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

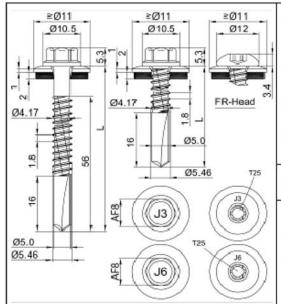
Component II: S235 - EN 10025-1

S280GD, S320GD - EN 10346

Drilling capacity $\Sigma t_i \leq 13,00 \text{ mm}$

Timber substructures

for timber substructures no performance determined


t _N	, _{II} =	4,0	00	5,0	00	6,0	00	8,0	00	10,	00	12,00	
M _{t,i}	nom =						-	_					
	0,50	0,77	ac	0,77	ac	0,77	ac	0,77	ac	0,77	ac	0,77	ac
	0,60	0,94	ac	0,94	ac	0,94	ac	0,94	ac	0,94	ac	0,94	а
	0,70	1,10	ac	1,10	ac	1,10	ac	1,10	ac	1,10	ac	1,10	а
	0,80	1,27	ac	1,27	ac	1,27	ac	1,27	ac	1,27	ac	1,27	а
V _{R,k} for t _{N,I}	0,90	1,48	ac	1,48	ac	1,48	ac	1,48	ac	1,48	ac	1,48	а
, x,	1,00	1,69	ac	1,69	ac	1,69	ac	1,69	ac	1,69	ac	1,69	а
_	1,20	1,94	-	1,94	-	1,94	-	1,94	ac	1,94	ac	-	-
	1,50	2,32	-	2,32	-	2,32	-	2,32	ac	2,32	ac	-	-
	2,00	2,91	-	3,00	-	3,09	-	3,26	ac	3,26	а	-	-
N _{R,II,k} =		4,7	70	6,4	10	6,4	10	6,4	1 0	6,4	10	6,4	10

Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

JT3-12-5,5xL JT6-12-5,5xL JT3-FR-12-5,5xL JT6-FR-12-5,5xL

With hexagon head or FR-head and seal washer $\geq \varnothing$ 11,0 mm

Materials

Fastener: stainless steel (1.4301 / 1.4567) – EN 10088

stainless steel (1.4401 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

with vulcanised EPDM seal

Component I: aluminium alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

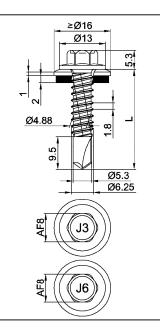
Component II: S235 - EN 10025-1

S280GD, S320GD - EN 10346

Drilling capacity $\Sigma t_i \leq 13,00 \text{ mm}$

Timber substructures

for timber substructures no performance determined


t _N	, _{II} =	4,0	00	5,0	00	6,0	00	8,0	00	10,	00	12,	00		
M _{t,i}	nom =						-	_							
	0,50	1,00	ac												
	0,60	1,22	ac	1,22	а										
	0,70	1,44	ac	1,44	а										
ij	0,80	1,66	ac	1,66	а										
V _{R,k} for	0,90	1,93	ac	1,93	а										
, H,	1,00	2,20	ac	2,20	а										
_	1,20	2,52	-	2,52	-	2,52	-	2,52	ac	2,52	ac	-	-		
	1,50	3,02	-	3,02	-	3,02	-	3,02	ac	3,02	ac	-	-		
	2,00	3,79	-	3,91	-	4,02	-	4,25	ac	4,25	а	-	-		
N _{R,II,k} =		4,7	70	6,4	10	6,4	10	6,4	10	6,4	10	6,4	10		

Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

JT3-12-5,5xL JT6-12-5,5xL JT3-FR-12-5,5xL JT6-FR-12-5,5xL

With hexagon head or FR-head and seal washer $\geq \varnothing$ 11,0 mm

Materials

Fastener: stainless steel (1.4301) - EN 10088,

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

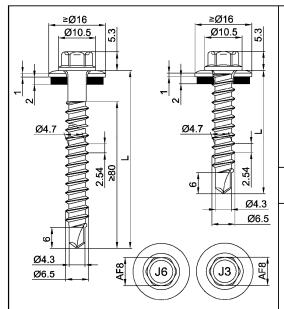
Component II: S235, S275 or S355 - EN 10025-1

S280GD, S320GD or S350GD - EN 10346

Drilling capacity $\Sigma t_i \le 6,50 \text{ mm}$

Timber substructures

no performance determined


t _{N,II}	[m m]	1,	50	2,	00	2,	50	3,	00	4,	00	5,0	00	6,0	00	7,0	00
N	/I _{t,nom}		_						7 N	lm						_	-
	0,50	_	_	1,80	abcd	1,80	abcd	1,80	abcd	1,80	abcd	1,80	abc	1,80	а	_	-
	0,55	_	_	2,20	abcd	2,20	abcd	2,20	abcd	2,20	abcd	2,20	abc	—	_	_	_
1=	0,63	_	_	2,60	abcd	2,60	abcd	2,60	abcd	2,60	abcd	2,60	abc	_	_	_	-
<u> </u>	0,75	_	_	3,40	ac —	_	_	-									
for t _{N,I} [mm]	0,88	_	_	3,80	ac	3,90	ac	4,10	ac	4,10	ac	4,10	а	 —	_	_	-
for	1,00	_	_	4,20	ac	4,40	ac	4,70	ac	4,70	ac	4,70	а	_	_	_	-
ΙŹ	1,13	_	_	4,70	ac	5,00	ac	5,40	ac	5,70	ac	5,70	а	—	_	_	-
V _{R,k} [kN]	1,25	_	_	5,10	ac	5,50	ac	6,00	ac	6,60	ac	6,60	а	_	_	_	-
>	1,50	_	_	5,70	ac	6,40	ac	7,00	ac	7,50	а	7,90	а	—	_	_	-
	1,75	_	_	5,70	ac	6,40	ac	7,00	ac	7,50	_	_	_	_	_	_	-
	2,00	_	_	5,70	ac	6,40	ac	7,00	ac	7,50	_	_	_	_	_	_	_
	0,50	_	_	1,50	abcd	1,50	abcd	1,50	abcd	1,50	abcd	1,50	abc	1,50	а	_	_
	0,55	_	_	2,10	abcd	2,10	abcd	2,10	abcd	2,10	abcd	2,10	abc	—	_	_	-
두	0,63	_	_	2,70	abcd	2,70	abcd	2,70	abcd	2,70	abcd	2,70	abc	—	_	_	-
ΙĒ	0,75	_	_	3,00	ac	3,70	ac	3,70	ac	3,70	ac	3,70	ac	—	_	_	-
Ţ.	0,88	_	_	3,00	ac	4,20	ac	4,20	ac	4,20	ac	4,20	а	_	_	_	-
for	1,00	_	_	3,00	ac	4,20	ac	4,70	ac	4,70	ac	4,70	а	_	_	_	-
ΙŹ	1,13	_	_	3,00	ac	4,20	ac	4,80	ac	5,60	ac	5,60	а		_	_	-
N _{R,k} [kN] for t _{N,I} [mm]	1,25	_	_	3,00	ac	4,20	ac	4,80	ac	6,40	ac	6,40	а	—	_	_	_
ž	1,50	_	_	3,00	ac	4,20	ac	4,80	ac	8,30	а	8,30	а	_	_	_	-
	1,75	_	_	3,00	ac	4,20	ac	4,80	ac	8,30	_	_	_	_	_	_	-
	2,00		_	3,00	ac	4,20	ac	4,80	ac	8,30	_	_	_	_	_		_

Self drilling screw

JT3-6-6,3 x L JT6-6-6,3 x L

with hexagon head and sealing washer ≥ Ø16 mm

Materials

Fastener: stainless steel (1.4301 / 1.4567) - EN 10088,

stainless steel (1.4404 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

Component I: S280GD - EN 10346 Component II: S235 - EN 10025-1

S280GD, S320GD or S350GD - EN 10346

Drilling capacity $\Sigma t_i \le 2,00 \text{ mm}$

Timber substructures

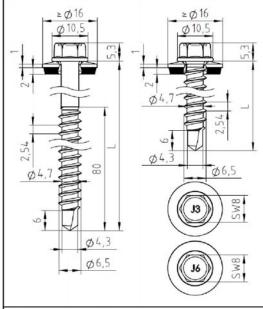
performance determined with

 $M_{y,Rk} = 9,742 \text{ Nm}$

 $f_{ax,k} = 8,575 \text{ N/mm}^2 \text{ for } l_{ef} \ge 26,0 \text{ mm}$

t _{N,II}	[m m]	0,6	3	0,7	⁷ 5	0,8	38	1,0	00	1,1	3	1,2	25	1,5	50	2,0	00		
N	t,nom	3 Nm										_							
	0,50		_	<u> </u>	_	<u> </u>	_	_		_	_	<u> </u>	_	<u> </u>		_		_	
	0,55	—	_	_	_	—	_	_	_	—	_	l —		—		—	—	—	
1-	0,63	1,30	_	1,30	_	1,30	_	1,30	_	1,30	_	1,30	_	—	_	—	_	1,30	a l
٦٤	0,75	1,30	_	1,80	_	1,80	_	1,80	_	1,80	_	1,80	_	—	_	—	_	1,80	ğ =
ž	0,88	1,30	_	1,80	_	2,60	_	2,60	_	2,60	_	—	_	—	_	—	_	2,60	resistance
V _{R,k} [kN] for t _{N,I} [mm]	1,00	1,30	_	1,80	_	2,60	_	3,30	_	—	_	—	_	—	_	—	_	3,30	aring resistanc of component I
Ξ	1,13	1,30	_	1,80	_	2,60	_	_	_	—	_	—	_	—	_	—	_	3,30	g ö
는 그는 그는 그는 그는 그는 그는 그는 그는 그를 보고 있다.	1,25	1,30	_	1,80	_	—	_	_	_	—	_	—	_	—	_	—	_	3,30	bearing of con
5"	1,50	1,30	_	1,80	_	—	_	_	_	—	_	—	_	—	_	—	_	3,30	ا ق
	1,75	—	_	—	_	—	_	_	_	—	_	—	_	—	_	—	_	—	
	2,00	—	_	—	_	—	_	_	_	—	_	—	_	—		—	_	_	
	0,50	0,43	_	0,54	_	0,70	_	0,86	_	0,86		0,86	_	0,86		_	_	1,19	
	0,55	0,55	_	0,68	_	0,89	_	1,09	_	1,09	_	1,09	_	—	_	—	_	1,50	.
=	0,63	0,80	_	1,00	_	1,30	_	1,60	_	1,60	_	1,60	_	—	_	—	_	2,20	စ္ဗ
N _{R,k} [kN] for t _{N,I} [mm]	0,75	0,80	_	1,00	_	1,30	_	1,60	_	1,60	_	1,60	_	—	_	—	_	2,80	star t
ż	0,88	0,80	_	1,00	_	1,30	_	1,60	_	1,60	_	—	_	_	_	—	_	3,50	esi:
ρ	1,00	0,80	_	1,00	_	1,30	_	1,60	_	—	_	—	_	—	_	—	_	4,20	through resista of component l
Ξ	1,13	0,80	_	1,00	_	1,30	_	_	_	_	_	—	_	—	_	—	_	5,00	onc light
;	1,25	0,80	_	1,00			_				_	_		_		—		5,90	a the
Įź	1,50	0,80	_	—	_	—	_	_	_	—	_	—	_	—	_	—	_	5,90	pull-through resistance of component l
	1,75	—	_	—	_	—	_	—	_	—	_	—	_	—	_	—	_	—	٥
	2,00	_	—	_	—	—	_	_	_	_	_	_	_	_	_	_	_	_	

The values listed above in dependence on the screw-in length l_{ef} are valid for $k_{mod} = 0.90$ and timber strength grade C24 ($\rho_a = 350 \text{ kg/m}^3$). For other combinations of k_{mod} and timber strength grades see section 4.2.2.


Self drilling screw

JT3-2-6,5 x L JT6-2-6,5 x L

with hexagon head and sealing washer ≥ Ø16 mm

Annex 64

Materials

Fastener: stainless steel (1.4301 / 1.4567) – EN 10088

stainless steel (1.4401 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

Component I: S280GD - EN 10346

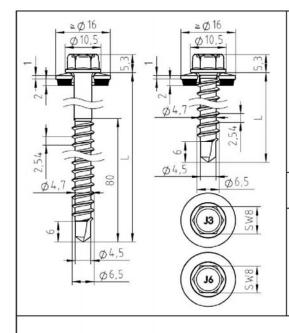
Component II: structural timber - EN 14081

 $\underline{\text{Drilling capacity}} \qquad \qquad \Sigma t_i \leq 2{,}00 \text{ mm}$

Timber substructures

performance determined with

 $M_{y,Rk} = 9,742 \text{ Nm}$


 $f_{ax,k} = 8,575 \text{ N/mm}^2 \text{ for } l_{ef} \ge 26 \text{ mm}$

ا	₃ =	32	38	42	48	52	58	62	68	72	78	82		
$M_{t,i}$	nom =			1	191 031 101 041		_					430		
	0,50	_	-		35-03		-	-		1	-		,	
	0,55	_	_	_	-	_	_	_	-	1—	-			<u>_</u>
	0,63	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,30	9
	0,75	1,80	1,80	1,80	1,80	1,80	1,80	1,80	1,80	1,80	1,80	1,80	1,80	= and =
Ę.	0,88	2,04	2,10	2,17	2,23	2,29	2,35	2,42	2,48	2,54	2,60	2,60	2,60	ring resistance of component l
V _{R,k} for t _{N,I}	1,00	2,04	2,10	2,17	2,23	2,29	2,35	2,42	2,48	2,54	2,60	2,67	3,30	
/R,k	1,13	2,04	2,10	2,17	2,23	2,29	2,35	2,42	2,48	2,54	2,60	2,67	3,30	bearing comp
	1,25	2,04	2,10	2,17	2,23	2,29	2,35	2,42	2,48	2,54	2,60	2,67	3,30	ear
	1,50	2,04	2,10	2,17	2,23	2,29	2,35	2,42	2,48	2,54	2,60	2,67	3,30	٩
	1,75	_	_	_	_	_	_	_	_	_	_	_	<u> </u>	
	2,00	_	_	_	_	_	_	_	_	_	_	_	_	
	0,50	1,19	1,19	1,19	1,19	1,19	1,19	1,19	1,19	1,19	1,19	1,19	1,19	ł
	0,55	1,30	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	~
	0,63	1,30	1,56	1,81	2,06	2,20	2,20	2,20	2,20	2,20	2,20	2,20	2,20) 9
п	0,75	1,30	1,56	1,81	2,06	2,31	2,56	2,80	2,80	2,80	2,80	2,80	2,80	t ä
ž	0,88	1,30	1,56	1,81	2,06	2,31	2,56	2,81	3,06	3,31	3,50	3,50	3,50	sist ner
fo	1,00	1,30	1,56	1,81	2,06	2,31	2,56	2,81	3,06	3,31	3,56	3,81	4,20	por
N _{R,k} for t _{N,I}	1,13	1,30	1,56	1,81	2,06	2,31	2,56	2,81	3,06	3,31	3,56	3,81	5,00	ough resista component
_	1,25	1,30	1,56	1,81	2,06	2,31	2,56	2,81	3,06	3,31	3,56	3,81	5,90	pull-trough resistance of component l
	1,50	1,30	1,56	1,81	2,06	2,31	2,56	2,81	3,06	3,31	3,56	3,81	5,90	<u> </u>
	1,75	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>
	2,00	_	_	_	_	_	_	_		_	_		_	

The values listed above in dependence on the screw-in length l_g are valid for $k_{mod} = 0.90$ and timber strength grade C24 ($\rho_k = 350 \text{ kg/m}^3$). For other values of k_{mod} and timber strength grades see section 4.2.2.

Self drilling screw	
JT3-2-6,5 x L	Annex 65
JT6-2-6,5 x L	
with hexagon head and sealing washer ≥ Ø 16 mm	

Materials

Fastener: stainless steel (1.4301 / 1.4567) - EN 10088

stainless steel (1.4401 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

with vulcanised EPDM seal

Component I: aluminium alloy

with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Component II: timber - EN 14081

Drilling capacity $\Sigma t_i \le 2,00 \text{ mm}$

Timber substructures

for timber substructures following performance were determined

 $M_{y,k} = 9,742 \, Nm$

 $= 8,575 \, \text{N/mm}^2$ for I_{eff} ≥ 32,5 mm $f_{ax,k}$

	l _g =	33,	33,00 36,00 39,00 42,00				00	45,	00	48,	00	51,	00	54,	00	60,	00				
N	t,nom =									_	-										
	0,50	0,54	-	0,54	-	0,54	-	0,54	-	0,54	-	0,54	-	0,54	-	0,54	-	0,54	-	0,54	_
	0,60	0,74	-	0,74	-	0,74	-	0,74	-	0,74	-	0,74	-	0,74	-	0,74	-	0,74	-	0,74	Ĭ.
Ш.,	0,70	0,93	-	0,93	-	0,93	-	0,93	-	0,93	-	0,93	-	0,93	-	0,93	-	0,93	-	0,93	oue
 .	0,80	1,13	-	1,13	-	1,13	-	1,13	-	1,13	-	1,13	-	1,13	-	1,13	-	1,13	-	1,13	of component (bearing)
قِ ا∣	0,90	1,25	-	1,25	-	1,25	-	1,25	-	1,25	-	1,25	-	1,25	-	1,25	-	1,25	-	1,25	co
V _{B.k} for	1,00	1,30	-	1,37	-	1,37	-	1,37	-	1,37	-	1,37	-	1,37	-	1,37	-	1,37	-	1,37	of (Be
^	1,20	1,30	-	1,45	-	1,60	-	1,70	-	1,70	-	1,70	-	1,70	-	1,70	-	1,70	-	1,70	nre
	1,50	1,30	-	1,45	-	1,60	-	1,70	-	1,70	-	1,70	-	1,70	-	1,70	-	1,70	-	1,70	lie
	2,00	1,30	-	1,45	-	1,60	-	1,70	-	1,70	-	1,70	-	1,70	-	1,70	-	1,70	-	1,70	
	N R,II,k =	1,1	12	1,2	25	1,3	88	1,5	51	1,6	64	1,7	7	1,9	90	2,0)3	2,1	6	failure of component II	see chapter 4.2.2

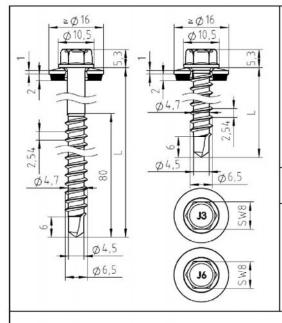
Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

The values indicated above, depending on the screw depth l_g , shall apply to $k_{mod} = 0.90$ and the timber strength class C24 (ρ_k = 350 kg / m³). For other values of k_{mod} and strength classes see chapter 4.2.2 For k_{mod} < 0,90: failure of component I see right column and failure of component II see chapter 4.2.2 with

 $f_{1,k} = 80 \cdot 10^{-6} \cdot \rho_k^2$ (load carrying class 3, ρ_k in kg/m³, max. 500 kg/m³) and yield moment $M_{y,k} = 13830$ Nmm.

Self-di	ʻill	ina	screw
---------	------	-----	-------

JT3-2-6,5xL JT6-2-6,5xL


With hexagon head and seal washer $\geq \emptyset$ 16,0 mm

Annex 66

Page 80 of European technical approval ETA-10/0200 of 27 June 2013

English translation prepared by DIBt

Materials

Fastener: stainless steel (1.4301 / 1.4567) – EN 10088

stainless steel (1.4401 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

with vulcanised EPDM seal

Component I: aluminium alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: timber - EN 14081

<u>Drilling capacity</u> $\Sigma t_i \le 2,00 \text{ mm}$

Timber substructures

for timber substructures following performance were determined

 $M_{y,k} = 9,742 \text{ Nm}$

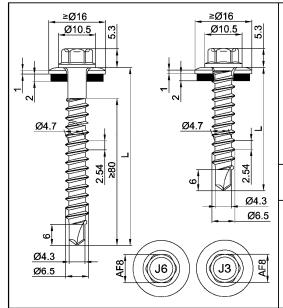
 $f_{ax,k} = 8,575 \text{ N/mm}^2$ for $I_{eff} \ge 32,5 \text{ mm}$

ľ	I,	₃ =	33,0	00	36,	00	39,0	00	42,	00	45,	00	48,	00	51,	00	54,	00	60,	00		
ľ	M _{t,}	nom =									_	-										
ľ		0,50	0,70	-	0,70	-	0,70	-	0,70	-	0,70	-	0,70	-	0,70	-	0,70	-	0,70	-	0,70	
		0,60	0,96	-	0,96	-	0,96	-	0,96	-	0,96	-	0,96	-	0,96	-	0,96	-	0,96	-	0,96	ìnt
	п	0,70	1,21	-	1,21	-	1,21	-	1,21	-	1,21	-	1,21	-	1,21	-	1,21	-	1,21	-	1,21	one
	,z	0,80	1,30	-	1,45	-	1,47	-	1,47	-	1,47	-	1,47	-	1,47	-	1,47	-	1,47	-	1,47	component aring)
	for	0,90	1,30	-	1,45	-	1,60	-	1,63	-	1,63	-	1,63	-	1,63	-	1,63	-	1,63	-	1,63	col
	V _{R,k} for	1,00	1,30	-	1,45	-	1,60	-	1,75	-	1,78	-	1,78	-	1,78	-	1,78	-	1,78	-	1,78	
	_	1,20	1,30	-	1,45	-	1,60	-	1,75	-	1,90	-	2,05	-	2,20	-	2,22	-	2,22	-	2,22 2,22	rre
		1,50	1,30	-	1,45	-	1,60	-	1,75	-	1,90	-	2,05	-	2,20	-	2,22	-	2,22	-	2,22	ailí
		2,00	1,30	-	1,45	-	1,60	-	1,75	-	1,90	-	2,05	-	2,20	-	2,22	-	2,22	-	2,22	_
	-	N _{R,II,k} =	1,1	2	1,2	25	1,3	18	1,5	51	1,6	64	1,7	77	1,9	90	2,0)3	2,1	6	failure of component II	see chapter 4.2.2

Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

The values indicated above, depending on the screw depth l_g , shall apply to $k_{mod} = 0.90$ and the timber strength class C24 ($\rho_k = 350$ kg / m^3). For other values of k_{mod} and strength classes see chapter 4.2.2

For $k_{mod} < 0.90$: failure of component I see right column and failure of component II see chapter 4.2.2 with $f_{1,k} = 80 \cdot 10^{-6} \cdot \rho_k^2$ (load carrying class 3, ρ_k in kg/m³, max. 500 kg/m³) and yield moment $M_{y,k} = 13830$ Nmm.


Sal	lf_A	rill	ina	60	r O M
Эe	II-u	rm	ma	SC	rew

JT3-2-6,5xL JT6-2-6,5xL

With hexagon head and seal washer ≥ Ø 16,0 mm

Annex 67

Materials

Fastener: stainless steel (1.4301 / 1.4567) - EN 10088,

stainless steel (1.4404 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088 Component I: S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

S280GD, S320GD or S350GD - EN 10346

Drilling capacity $\Sigma t_i \le 2,00 \text{ mm}$

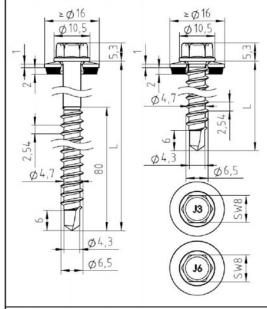
Timber substructures

performance determined with

 $M_{y,Rk} = 9,742 \text{ Nm}$

 $f_{ax,k} = 8,575 \text{ N/mm}^2 \text{ for } l_{ef} \ge 26,0 \text{ mm}$

t _{N.II}	[m m]	0,6	3	0,7	'5	0,8	88	1,0	00	1,1	3	1,2	25	1,5	50	2,	00		
	l _{t,nom}			<u> </u>		•		3 N	lm					<u> </u>		_	_	1/	
	0,50	_	_	_	_	_	_	_	_	<u> </u>	_	_	_		_	_	_	T —	
	0,55	—	_	—	_	—	_	_	_	—	_	_		—		—	_	_	
1-	0,63	1,30	_	1,40	_	1,40	_	1,40	_	1,40	_	1,40	_	—		—	_	1,40	σ.
٦٤	0,75	1,30	_	1,80	_	2,00	_	2,00	_	2,00	_	2,00	_	—	_	—	_	2,00	Sugar H
Ţ.	0,88	1,30	_	1,80	_	2,60	_	2,60	_	2,80	_	_	_	<u> </u>	_	<u> </u>	_	2,80	resistance iponent l
V _{R,k} [kN] for t _{N,I} [mm]	1,00	1,30	_	1,80	_	2,60	_	3,30	_	—		_	_	—		—	_	3,30	
ΙŜ	1,13	1,30	_	1,80	_	2,60	_	_	_	—	_	_	_	—	_	—	_	3,30	bearing of con
1 7.	1,25	1,30	_	1,80	_	—	_	_	_	_	_	_	_	—	_	—	_	3,30	eari of (
>	1,50	1,30	_	—	_	—	_	_	_	—	_	_	_	—	_	—	_	3,30	ة
	1,75	—	_	—	_	—	_	_	_	—	_	_	_	—	_	—	_	_	
	2,00		_	—	_	_	_	_	_	_	_	_	_	_		—	_	—	
	0,50	0,43	_	0,54	_	0,70	_	0,86	_	0,86	_	0,86	_	0,86	_			1,30	
	0,55	0,55	_	0,68	_	0,89	_	1,09	_	1,09	_	1,09	_	—	_	—	_	1,64	a.
1 =	0,63	0,80	_	1,00	_	1,30	_	1,60	_	1,60	_	1,60	_	—	_	—	_	2,40	uce
<u> </u>	0,75	0,80	_	1,00	_	1,30	_	1,60	_	1,60		1,60	_	—		—	_	3,10	sta nt l
ž	0,88	0,80	_	1,00	_	1,30	_	1,60	_	1,60	_	_	_	—	_	—	_	3,80	esi
fo	1,00	0,80	_	1,00	_	1,30	_	1,60	_	—	_	_	_	—	_	—	_	4,60	بلا قرا
N _{R,k} [kN] for t _{N,I} [mm]	1,13	0,80	_	1,00	_	1,30	_	_	_	—	_	_	_	—	_	—	_	5,50	through resista of component I
*	1,25	0,80	_	1,00	_	—	_	_	_	—		_		—	_	—		6,30	후
اِتّ	1,50	0,80	_	—	_	—	_	_	_	—	_	_	_	—	_	—	_	6,30	pull-through resistance of component l
	1,75	—	_	—	_	—	_	<u> </u>	_	—	_	_	_	—	_	—	_	—	ů.
	2,00	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	


The values listed above in dependence on the screw-in length l_{ef} are valid for $k_{mod} = 0.90$ and timber strength grade C24 ($\rho_a = 350 \text{ kg/m}^3$). For other combinations of k_{mod} and timber strength grades see section 4.2.2.

Self drilling screw

JT3-2-6,5 x L JT6-2-6,5 x L

with hexagon head and sealing washer ≥ Ø16 mm

Materials

Fastener: stainless steel (1.4301 / 1.4567) – EN 10088

stainless steel (1.4401 / 1.4578) - EN 10088

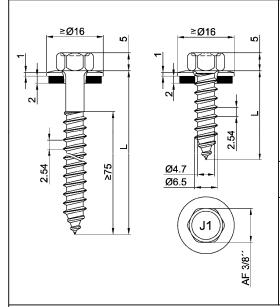
Washer: stainless steel (1.4301) - EN 10088 Component I: S320GD or S350GD - EN 10346 Component II: structural timber - EN 14081

<u>Drilling capacity</u> $\Sigma t_i \le 2,00 \text{ mm}$

Timber substructures

performance determined with

 $M_{y,Rk} = 9,742 \text{ Nm}$


 $f_{ax,k} = 8,575 \text{ N/mm}^2 \text{ for } I_{ef} \ge 26 \text{ mm}$

ا	₃ =	32	38	42	48	52	58	62	68	72	78	82		
M _{t,r}	nom =			1	100		_					430		
	0,50	_	-		10.—0		-	-		1	-		 2	
	0,55	_	_	_	1 —	_	_	_	-	1—	-			4_
	0,63	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	9
	0,75	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	ang 🛨 📗
Ξ̈́	0,88	2,04	2,10	2,17	2,23	2,29	2,35	2,42	2,48	2,54	2,60	2,67	2,80	ring resistance of component l
V _{R,k} for t _{N,I}	1,00	2,04	2,10	2,17	2,23	2,29	2,35	2,42	2,48	2,54	2,60	2,67	3,30	
/R,k	1,13	2,04	2,10	2,17	2,23	2,29	2,35	2,42	2,48	2,54	2,60	2,67	3,30	bearing comp
	1,25	2,04	2,10	2,17	2,23	2,29	2,35	2,42	2,48	2,54	2,60	2,67	3,30	ear
	1,50	2,04	2,10	2,17	2,23	2,29	2,35	2,42	2,48	2,54	2,60	2,67	3,30	٩
	1,75	_	_	_	_	_	_	_	_	_	_	_	—	
	2,00	_	_	_	_	_	_	_	_	_	_	_		
	0,50	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1
	0,55	1,30	1,56	1,64	1,64	1,64	1,64	1,64	1,64	1,64	1,64	1,64	1,64	<u> </u>
	0,63	1,30	1,56	1,81	2,06	2,31	2,40	2,40	2,40	2,40	2,40	2,40	2,40	99
	0,75	1,30	1,56	1,81	2,06	2,31	2,56	2,81	3,06	3,10	3,10	3,10	3,10	anc t
ž	0,88	1,30	1,56	1,81	2,06	2,31	2,56	2,81	3,06	3,31	3,56	3,80	3,80	sist nen
for	1,00	1,30	1,56	1,81	2,06	2,31	2,56	2,81	3,06	3,31	3,56	3,81	4,60	por
N _{R,k} for t _{N,I}	1,13	1,30	1,56	1,81	2,06	2,31	2,56	2,81	3,06	3,31	3,56	3,81	5,50	ough resista component
~	1,25	1,30	1,56	1,81	2,06	2,31	2,56	2,81	3,06	3,31	3,56	3,81	6,30	pull-trough resistance of component l
	1,50	1,30	1,56	1,81	2,06	2,31	2,56	2,81	3,06	3,31	3,56	3,81	6,30	<u> </u>
	1,75	_	_	_	-	_	_	_	_	_	_	_	—	٥
	2,00	_	_	_	_	_	_	_	_	_	_	_	_	

The values listed above in dependence on the screw-in length l_g are valid for $k_{mod} = 0.90$ and timber strength grade C24 ($\rho_k = 350 \text{ kg/m}^3$). For other values of k_{mod} and timber strength grades see section 4.2.2.

Self drilling screw	
JT3-2-6,5 x L JT6-2-6,5 x L with hexagon head and sealing washer ≥ Ø 16 mm	Annex 69

Materials

Fastener: stainless steel (1.4529) - EN 10088 Washer: stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

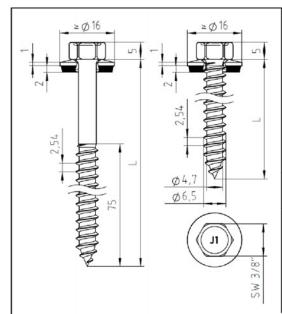
S280GD, S320GD or S350GD - EN 10346

<u>Predrill diameter</u> see table below

Timber substructures

performance determined with

 $M_{y,Rk} = 9,742 \text{ Nm}$


 $f_{ax,k} = 8,575 \text{ N/mm}^2 \text{ for } I_{ef} \ge 26,0 \text{ mm}$

t _{N,I}	[mm]	0,6	3	0,7	'5	0,8	88	1,0	00	1,1	3	1,2	25	1,5	50	2,0	00		
	[mm]	ø3		ø 4	,0			I	ø	4,5				ø 5	5,0	ø 5	,3	1 /	/
	$VI_{t,nom}$					3 N	m							5 N	lm				
	0,50	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
	0,55	—	_	—	_	—	_	_	_	—	_	—	_	_	_	—	_	—	
┨┲	0,63	1,30	_	1,50	_	1,80	_	2,00	ac	2,30	ac	2,50	аc	2,90	аc	2,90	ac	2,90	o l
V _{R,k} [kN] for t _{N,I} [mm]	0,75	1,40	_	1,60	_	1,90	_	2,20	ac	2,50	ac	2,70	ac	3,10	ac	3,10	ac	3,10	resistance iponent l
Ţ	88,0	1,50	_	1,70	_	2,00	_	2,30	_	2,60	_	2,80	ac	3,20	ac	3,20	ac	3,20	aring resistand of component l
ρ	1,00	1,50	_	1,80	_	2,10	_	2,50	_	2,80	_	3,10	_	3,60	_	3,60	_	3,60	res od
ΙZ	1,13	1,60	_	1,80	_	2,20	_	2,60	_	2,90	_	3,20	_	3,80	_	3,80	_	3,80	gu ng
	1,25	1,60	_	1,90	_	2,30	_	2,70	_	3,00	_	3,30	_	4,00	_	4,00	_	4,00	earing of con
5	1,50	1,60	_	1,90	_	2,40	_	2,80	_	3,20	_	3,50	_	4,00	_	4,00	_	4,00	g
	1,75	1,60	_	1,90	_	2,40	_	2,80	_	3,20	_	3,50	_	4,00	_	4,00	_	4,00	
	2,00	1,60	_	1,90	_	2,40	_	2,80	_	3,20		3,50	_	4,00	_	4,00	_	4,00	
	0,50	0,49	_	0,59	_	0,70	_	0,76	ac	0,86	ac	0,97	ac	1,13	ac	1,13	ac	1,19	
	0,55	0,61	_	0,75	_	0,89	_	0,95	ac	1,09	ac	1,23	ac	1,43	ac	1,43	ac	1,50	
1-	0,63	0,90	_	1,10	_	1,30	_	1,40	ac	1,60	ac	1,80	ac	2,10	ac	2,10	ac	2,20)ce
for t _{N,I} [mm]	0,75	0,90	_	1,10	_	1,30	_	1,40	ac	1,60	ac	1,80	ac	2,10	ac	2,10	ac	2,80	star
] <u>z</u>	0,88	0,90	_	1,10	_	1,30	_	1,40	_	1,60	_	1,80	ac	2,10	ac	2,10	ac	3,50	esis ner
<u> </u>	1,00	0,90	_	1,10	_	1,30	_	1,40	_	1,60	_	1,80	_	2,20	_	2,20	_	4,20	p od
	1,13	1,00	_	1,20	_	1,40	_	1,50	_	1,70	_	1,90	_	2,30	_	2,30	_	5,00	through resista of component l
N _{R,k} [kN]	1,25	1,00	_	1,20	_	1,40	_	1,50	_	1,70	_	1,90	_	2,30	_	2,30	_	5,90	Fred St
z	1,50	1,00	_	1,20	_	1,40	_	1,50	_	1,70	_	1,90	_	2,30	_	2,30	_	5,90	pull-through resistance of component l
	1,75	1,00	_	1,20	_	1,40	_	1,50	_	1,70	_	1,90	_	2,30	_	2,30	_	5,90	ط
	2,00	1,00	_	1,20	_	1,40	_	1,50	_	1,70	_	1,90	_	2,30	_	2,30	_	5,90	

The values listed above in dependence on the screw-in length l_{ef} are valid for k_{mod} = 0,90 and timber strength grade C24 (ρ_a = 350 kg/m³). For other combinations of k_{mod} and timber strength grades see section 4.2.2.

Self tapping screw	
JA1-6,5 x L with hexagon head and sealing washer ≥ Ø16 mm	Annex 70

Materials

Fastener: stainless steel (1.4529) - EN 10088
Washer: stainless steel (1.4304) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

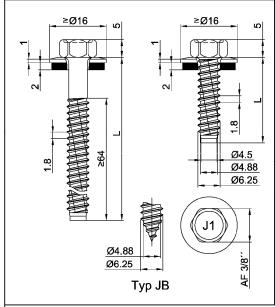
Component II: structural timber – EN 14081

<u>Predrill diameter</u> see table below

Timber substructures

performance determined with

 $M_{y,Rk} = 9,742 \text{ Nm}$


 $f_{ax,k} = 8,575 \text{ N/mm}^2 \text{ for } l_{ef} \ge 26 \text{ mm}$

	g =	26	31	36	41	46	51	56	61	66	71	76		
d _{pd}	[mm]					Q	ð 4,5 m r	n] /	
Mt	,nom =						_							
	0,50	2 - 2	ş. — ş:					I	-	_	_		_	
	0,55	-	Q.—.3			-		-	-	1	_	1	i —	<u>_</u>
	0,63	2,04	2,10	2,17	2,23	2,29	2,35	2,42	2,48	2,54	2,60	2,67	2,90	bearing resistance of component l
	0,75	2,04	2,10	2,17	2,23	2,29	2,35	2,42	2,48	2,54	2,60	2,67	3,10	- g =
ž	0,88	2,04	2,10	2,17	2,23	2,29	2,35	2,42	2,48	2,54	2,60	2,67	3,20	rring resista component
وّ	1,00	2,04	2,10	2,17	2,23	2,29	2,35	2,42	2,48	2,54	2,60	2,67	3,60	So les
V _{R,k} for t _{N,I}	1,13	2,04	2,10	2,17	2,23	2,29	2,35	2,42	2,48	2,54	2,60	2,67	3,80	ing
	1,25	2,04	2,10	2,17	2,23	2,29	2,35	2,42	2,48	2,54	2,60	2,67	4,00	eari o
	1,50	2,04	2,10	2,17	2,23	2,29	2,35	2,42	2,48	2,54	2,60	2,67	4,00	ğ
	1,75	2,04	2,10	2,17	2,23	2,29	2,35	2,42	2,48	2,54	2,60	2,67	4,00	
	2,00	2,04	2,10	2,17	2,23	2,29	2,35	2,42	2,48	2,54	2,60	2,67	4,00	
	0,50	1,19	1,19	1,19	1,19	1,19	1,19	1,19	1,19	1,19	1,19	1,19	1,19	
	0,55	1,30	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	<u>_</u>
	0,63	1,30	1,56	1,81	2,06	2,20	2,20	2,20	2,20	2,20	2,20	2,20	2,20	g
	0,75	1,30	1,56	1,81	2,06	2,31	2,56	2,80	2,80	2,80	2,80	2,80	2,80	= =
Z,	0,88	1,30	1,56	1,81	2,06	2,31	2,56	2,81	3,06	3,31	3,50	3,50	3,50	ough resistar component l
N _{R,k} for t _{N,1}	1,00	1,30	1,56	1,81	2,06	2,31	2,56	2,81	3,06	3,31	3,56	3,81	4,20	ğ Ö
Ä.	1,13	1,30	1,56	1,81	2,06	2,31	2,56	2,81	3,06	3,31	3,56	3,81	5,00	ug
_	1,25	1,30	1,56	1,81	2,06	2,31	2,56	2,81	3,06	3,31	3,56	3,81	5,90	pull-trough resistance of component l
	1,50	1,30	1,56	1,81	2,06	2,31	2,56	2,81	3,06	3,31	3,56	3,81	5,90	⇟
	1,75	1,30	1,56	1,81	2,06	2,31	2,56	2,81	3,06	3,31	3,56	3,81	5,90	٥
	2,00	1,30	1,56	1,81	2,06	2,31	2,56	2,81	3,06	3,31	3,56	3,81	5,90	

The values listed above in dependence on the screw-in length l_g are valid for k_{mod} = 0,90 and timber strength grade C24 (ρ_k = 350 kg/m³). For other values of k_{mod} and timber strength grades see section 4.2.2.

Self tapping screw JA1-6,5 x L with hexagon head and sealing washer ≥ Ø 16 mm Annex 71

Materials

Fastener: stainless steel (1.4529) - EN 10088 Washer: stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

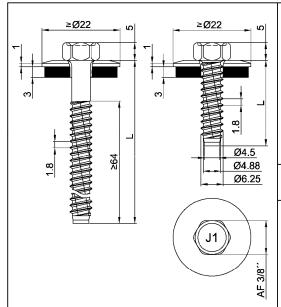
S280GD, S320GD or S350GD - EN 10346

<u>Predrill diameter</u> see table below

Timber substructures

no performance determined

Γ	t _{N,II}	[m m]	1,2	25	1,5	50	2,	00	3,	00	4,	00	6,	00	≥ 7	,00	_	_
Г	d_{pd}	[m m]		ø :	5,0				ø	5,3			ø	5,5	ø:	5,7	_	_
Γ	M	t,nom							5 1	l m							_	-
Г		0,50	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
		0,55	_	_	l —	_	—	_	_	_	—	_	_	_	_	_	_	_
	ᆮ	0,63	2,50	ac	2,70	ac	2,90	abcd	3,00	abcd	3,10	abcd	3,10	abcd	3,10	abcd	_	_
	直	0,75	2,60	ac	3,10	ac	3,30	abcd	3,60	abcd	3,70	abcd	3,70	abcd	3,70	abcd	_	_
	for t _{N,I} [mm]	0,88	2,80	ac	3,20	ac	3,80	ac	4,10	abcd	4,30	abcd	4,40	abcd	4,40	abcd	_	_
	Гoг	1,00	3,20	ac	3,60	ac	4,10	ac	4,80	ac	4,90	ac	5,10	ac	5,10	ac	_	_
	Z	1,13	3,40	ac	4,00	ac	4,60	ac	5,40	ac	5,60	ac	5,80	ac	5,80	ac	_	_
	V _{R,k} [kN]	1,25	3,60	ac	4,20	ac	5,00	ac	6,10	ac	6,30	ac	6,50	ac	6,50	ac	_	_
	>	1,50	3,70	ac	4,40	ac	5,70	ac	6,80	ac	7,10	ac	7,30	ac	7,30	ac	_	_
		1,75	3,70	ac	4,70	ac	6,20	ac	7,60	ac	7,70	ac	8,10	ac	8,10	ac	_	_
		2,00	5,00	_	6,50	_	8,80	_	10,3	_	10,6	_	11,3	_	11,3	_	_	_
Г		0,50	0,97	ac	1,35	ac	1,51	abcd	1,51	abcd	1,51	abcd	1,51	abcd	1,51	abcd	_	_
		0,55	1,23	ac	1,71	ac	1,91	abcd	1,91	abcd	1,91	abcd	1,91	abcd	1,91	abcd	_	_
	⋥	0,63	1,80	ac	2,50	ac	2,80	abcd	2,80	abcd	2,80	abcd	2,80	abcd	2,80	abcd	_	_
	for t _{N,I} [mm]	0,75	2,00	ac	2,60	ac	3,10	abcd	3,60	abcd	3,60	abcd	3,60	abcd	3,60	abcd	_	_
	Ţ,	0,88	2,00	ac	2,70	ac	3,30	ac	3,80	abcd	3,80	abcd	3,80	abcd	3,80	abcd	_	_
		1,00	2,00	ac	2,70	ac	3,40	ac	4,00	ac	4,00	ac	4,00	ac	4,00	ac	_	_
	Ŝ	1,13	2,00	ac	2,70	ac	3,60	ac	4,40	ac	4,40	ac	4,40	ac	4,40	ac	_	_
	N _{X,K} [KN]	1,25	2,00	ac	2,70	ac	3,60	ac	4,80	ac	4,90	ac	4,90	ac	4,90	ac	_	_
	ž	1,50	2,00	ac	2,70	ac	3,60	ac	5,60	ac	5,90	ac	5,90	ac	5,90	ac	_	_
		1,75	2,00	ac	2,70	ac	3,60	ac	5,80	ac	6,90	ac	7,10	ac	7,10	ac	_	_
		2,00	2,00	_	2,70	_	3,60	_	6,00	_	7,30	_	7,60	_	7,60	_	_	_


JZ1 - 6,3 x L for components II with $t_{II} \ge 1,25$ mm JB1 - 6,3 x L for components II with $t_{II} \le 2,00$ mm

Self	tap	pniq	screw

JZ1-6,3 x L JB1-6,3 x L

with hexagon head and sealing washer ≥ Ø16 mm

Materials

Fastener: stainless steel (1.4529) - EN 10088 Washer: stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

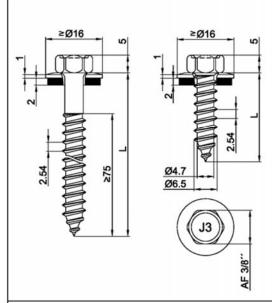
Component II: S235 - EN 10025-1

S280GD, S320GD or S350GD - EN 10346

<u>Predrill diameter</u> see table below

Timber substructures

no performance determined


t _N	_{II} [m m]	1,:	50	2,0	00	3,0	00	4,	00	5,	00	6,	00	≥ 7	,00	_	
	d [mm]			_	_				ø :				5,5		5,7	_	-
	$M_{t,nom}$			_	_						5 N	lm				_	-
	0,50	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
	0,55	_	_	_	_	_	_	_	_	—	_	—	_	_	_	_	-
┨┲	0,63	_	_		_	_	_	3,40	abcd	3,40	abcd	3,40	abcd	3,40	abcd	_	_
V _{R.K} [KN] for t _{N,I} [mm]	0,75	_	_	_	_	_	_	4,20	ac	4,20	ac	4,20	ac	4,20	ac	_	_
Į,Ž	0,88	_	_	_	_	_	_	4,70	ac	4,70	ac	4,70	ac	4,70	ac	_	-
ξį	1,00	_	_	_	_	_	_	5,00	ac	5,00	ac	5,10	ac	5,10	ac	_	-
ĮŹ	1,13	_	_	_	_	_	_	5,60	ac	5,60	ac	5,80	ac	5,80	ac	_	-
*	1,25	_	_	_	_	_	_	6,30	_	6,40	_	6,50	ac	6,50	ac	_	_
5	1,50	_	_	_	_	_	_	7,10	_	7,20	_	7,30	_	7,30	_	_	_
	1,75	_	_	_	_	_	_	7,70	_	7,90	_	8,10	_	8,10	_	_	-
	2,00	_	_	_	_	—	_	7,70	_	7,90	_	8,10	_	8,10	_	_	-
	0,50	_	_	_	_	_	_	1,67	abcd	1,67	abcd	1,67	abcd	1,67	abcd	_	
	0,55	_	_	_	_	_	_	2,11	abcd	2,11	abcd	2,11	abcd	2,11	abcd	_	-
┨┲	0,63	_	_	_	_	_	_	3,10	abcd	3,10	abcd	3,10	abcd	3,10	abcd	_	_
<u>E</u>	0,75	_	_	_	_	_	_	4,00	ac	4,00	ac	4,00	ac	4,00	ac	_	_
Ţ	0,88	_	_	_	_	_	_	4,40	ac	4,40	ac	4,40	ac	4,40	ac	_	_
후	1,00	_	_	_	_	_	_	4,60	ac	4,60	ac	4,60	ac	4,60	ac	_	_
N _{R,k} [kN] for t _{N,I} [mm]	1,13	_	_	_	_	_	_	5,10	ac	5,10	ac	5,10	ac	5,10	ac	_	_
 	1,25	_	_	_	_	_	_	5,10	_	5,10	_	5,10	ac	5,10	ac	_	_
=	1,50	_	_	_	_	_	_	5,90	_	5,90	_	5,90	_	5,90	_	_	_
	1,75	_	_	_	_	_	_	6,90	_	6,90	_	7,10	_	7,10	_	_	_
	2,00	_	_	_	_	_	_	8,80	_	11,6	_	13,4	_	13,4	_	_	_

Self tapping screw

JZ1-6,3 x L

with hexagon head and sealing washer ≥ Ø22 mm

Materials

Fastener: stainless steel (1.4301) - EN 10088 Washer: stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

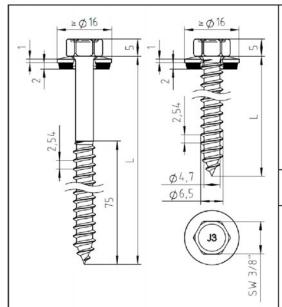
S280GD, S320GD or S350GD - EN 10346

<u>Predrill diameter</u> see table below

Timber substructures

performance determined with

 $M_{y,Rk} = 9,742 \text{ Nm}$


 $f_{ax,k}$ = 8,575 N/mm² for $I_{ef} \ge 26,0$ mm

t _{N,I}	[mm]	0,6	33	0,7	'5	0,8	38	1,0	00	1,1	13	1,2	25	1,5	50	2,0	00		
5.00	[mm]	ø3	,5	ø 4	,0				ø	4,5				ø 5	5,0	ø 5	,3	1,	
	M _{t,nom}					3 N	lm							5 N	lm				
	0,50	-	_	-	-	-	_	_	_	_	-	_	_	_	_	-	-	-	
	0,55	-	$\overline{}$	-	-	_	-	7-7	_	-	-	1-1	-	7-0	_		$(1-\epsilon)^{-1}$	7-0	
1=	0,63	1,30	_	1,50	_	1,80	_	2,00	ac	2,30	ac	2,50	ac	2,90	ac	2,90	ac	2,90	a l
Ι <u>Έ</u>	0,75	1,40	_	1,60	_	1,90	_	2,20	ac	2,50	ac	2,70	ac	3,10	ac	3,10	ac	3,10	ᇣᇉ
Ţ	0,88	1,50	_	1,70	_	2,00	_	2,30	_	2,60	_	2,80	ac	3,20	ac	3,20	ac	3,20	resistance Iponent I
ģ	1,00	1,50	_	1,80	_	2,10	_	2,50	_	2,80	_	3,10	_	3,60	_	3,60	_	3,60	res
ΙZ	1,13	1,60	_	1,80	_	2,20	_	2,60	_	2,90	_	3,20	_	3,80	_	3,80	_	3,80	aring resistand of component l
V _{R,k} [kN] for t _{N,I} [mm]	1,25	1,60	_	1,90	_	2,30	_	2,70	_	3,00	_	3,30	_	4,00	_	4,00	_	4,00	earing of con
> =	1,50	1,60	_	1,90	_	2,40	_	2,80	_	3,20	_	3,50	_	4,00	_	4,00	_	4,00	g
	1,75	1,60	_	1,90	_	2,40	_	2,80	_	3,20	_	3,50	_	4,00	_	4,00	_	4,00	
	2,00	1,60	_	1,90	_	2,40	_	2,80	_	3,20	_	3,50		4,00	_	4,00	_	4,00	
	0,50	0,49	_	0,59	_	0,70	_	0,76	ac	0,86	ac	0,97	ac	1,13	ac	1,13	ac	1,19	
	0,55	0,61	_	0,75	_	0,89	_	0,95	ac	1,09	ac	1,23	ac	1,43	ac	1,43	ac	1,50	
1=	0,63	0,90	_	1,10	_	1,30	_	1,40	ac	1,60	ac	1,80	ac	2,10	ac	2,10	ac	2,20	<u>ာ</u> င
for t _{N,1} [mm]	0,75	0,90	_	1,10	_	1,30	_	1,40	ac	1,60	ac	1,80	ac	2,10	ac	2,10	ac	2,80	star
Ţ,	88,0	0,90	_	1,10	_	1,30	_	1,40	_	1,60	_	1,80	ac	2,10	ac	2,10	ac	3,50	esis ner
وً	1,00	0,90	_	1,10	_	1,30	_	1,40	_	1,60	_	1,80	_	2,20	_	2,20	_	4,20	r d
	1,13	1,00	_	1,20	_	1,40	_	1,50	_	1,70	_	1,90	_	2,30	_	2,30	_	5,00	rough resista component l
N _{R.k} [kN]	1,25	1,00	_	1,20	_	1,40	_	1,50	_	1,70	_	1,90	_	2,30	_	2,30	_	5,90	of c
ž	1,50	1,00	_	1,20	_	1,40	_	1,50	_	1,70	_	1,90	_	2,30	_	2,30	_	5,90	pull-through resistance of component l
	1,75	1,00	_	1,20	_	1,40	_	1,50	_	1,70	_	1,90	_	2,30	_	2,30	_	5,90	۵
	2,00	1,00	_	1,20	_	1,40	_	1,50	_	1,70	_	1,90	_	2,30	_	2,30	_	5,90	

The values listed above in dependence on the screw-in length l_{ef} are valid for k_{mod} = 0,90 and timber strength grade C24 (ρ_a = 350 kg/m³). For other combinations of k_{mod} and timber strength grades see section 4.2.2.

Colffenning core	
Self tapping screw	
JA3-6,5 x L with hexagon head and sealing washer ≥ Ø16 mm	Annex 74

Materials

Fastener: stainless steel (1.4301 / 1.4567) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

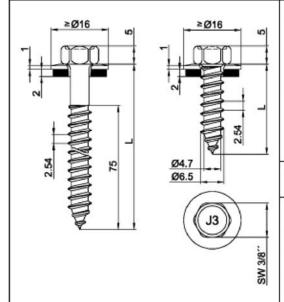
Component II: structural timber – EN 14081

<u>Predrill diameter</u> see table below

Timber substructures

performance determined with

 $M_{y,Rk} = 9,742 \; Nm$


 $f_{ax,k} = 8,575 \text{ N/mm}^2 \text{ for } l_{ef} \ge 26 \text{ mm}$

_							<u>'</u>								
	ا	, =	26	31	36	41	46	51	56	61	66	71	76		
	d_{pd}	[mm]					Q	ð 4,5 m n	n					/	
	M _{t,r}	nom =						_							
		0,50	_	s s	_	_	-	100 - 100	_	1 To 1	_	_		1	
		0,55	_	10-0		_	-		_	_	_	_	-	1	_
		0,63	2,04	2,10	2,17	2,23	2,29	2,35	2,42	2,48	2,54	2,60	2,67	2,90	0
	п	0,75	2,04	2,10	2,17	2,23	2,29	2,35	2,42	2,48	2,54	2,60	2,67	3,10	bearing resistance of component I
		0,88	2,04	2,10	2,17	2,23	2,29	2,35	2,42	2,48	2,54	2,60	2,67	3,20	tring resista component
	V _{R,k} for t _{N,I}	1,00	2,04	2,10	2,17	2,23	2,29	2,35	2,42	2,48	2,54	2,60	2,67	3,60	Por Tes
	/R,k	1,13	2,04	2,10	2,17	2,23	2,29	2,35	2,42	2,48	2,54	2,60	2,67	3,80	ing om
	_	1,25	2,04	2,10	2,17	2,23	2,29	2,35	2,42	2,48	2,54	2,60	2,67	4,00	og
		1,50	2,04	2,10	2,17	2,23	2,29	2,35	2,42	2,48	2,54	2,60	2,67	4,00	ا ق
		1,75	2,04	2,10	2,17	2,23	2,29	2,35	2,42	2,48	2,54	2,60	2,67	4,00	
		2,00	2,04	2,10	2,17	2,23	2,29	2,35	2,42	2,48	2,54	2,60	2,67	4,00	
		0,50	1,19	1,19	1,19	1,19	1,19	1,19	1,19	1,19	1,19	1,19	1,19	1,19	
		0,55	1,30	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	<u>_</u>
		0,63	1,30	1,56	1,81	2,06	2,20	2,20	2,20	2,20	2,20	2,20	2,20	2,20	e l
	П	0,75	1,30	1,56	1,81	2,06	2,31	2,56	2,80	2,80	2,80	2,80	2,80	2,80	anc t
		0,88	1,30	1,56	1,81	2,06	2,31	2,56	2,81	3,06	3,31	3,50	3,50	3,50	sist
	Į	1,00	1,30	1,56	1,81	2,06	2,31	2,56	2,81	3,06	3,31	3,56	3,81	4,20	g g
	N _{R,k} for t _{N,I}	1,13	1,30	1,56	1,81	2,06	2,31	2,56	2,81	3,06	3,31	3,56	3,81	5,00	ough resistar component l
	_	1,25	1,30	1,56	1,81	2,06	2,31	2,56	2,81	3,06	3,31	3,56	3,81	5,90	pull-trough resistance of component l
		1,50	1,30	1,56	1,81	2,06	2,31	2,56	2,81	3,06	3,31	3,56	3,81	5,90	-
		1,75	1,30	1,56	1,81	2,06	2,31	2,56	2,81	3,06	3,31	3,56	3,81	5,90	٥
		2,00	1,30	1,56	1,81	2,06	2,31	2,56	2,81	3,06	3,31	3,56	3,81	5,90	

The values listed above in dependence on the screw-in length l_g are valid for k_{mod} = 0,90 and timber strength grade C24 (ρ_k = 350 kg/m³). For other values of k_{mod} and timber strength grades see section 4.2.2.

Self tapping screw	
JA3-6,5 x L with hexagon head and sealing washer ≥ Ø 16 mm	Annex 75

Materials

Fastener: stainless steel (1.4301 / 1.4567) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

with vulcanised EPDM seal

Component I: aluminium alloy

with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Component II: aluminium alloy

with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573 \text{ timber } - \text{EN } 14081$

Pre-drill diameter see table

Timber substructures

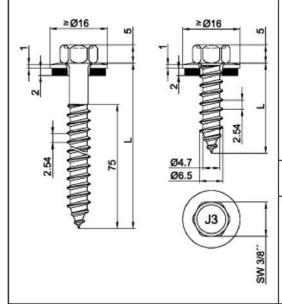
for timber substructures following performance were determined

 $M_{y,k} \\$ $= 9,742 \, \text{Nm}$

 $= 8,575 \text{ N/mm}^2$ for ≥ 32,5 mm $f_{ax,k}$ leff

t,	_{4,II} =	0,5	0	0,7	'0	0,9	90	1,0	00	1,2	20	1,5	50	2,0	00	2,	50	3,	00		/
d	pd =		Ø	4,0							Ø	4,5						Ø	5,0] /	
M _t	nom =									_	-										
	0,50	0,24	-	0,40	-	0,57	-	0,65	-	0,82	-	0,92	ac	0,92	ac	0,92	abcd	0,92	abcd	0,92	_
	0,60	0,24	-	0,40	-	0,57	-	0,65	-	0,82	-	1,00	-	1,15	ac	1,15	ac	1,15	ac	1,15	Ħ.
Ш "	0,70	0,24	-	0,40	-	0,57	-	0,65	-	0,82	-	1,07	-	1,38	-	1,38	ac	1,38	ac	1,38	
<u> </u>	0,80	0,24	-	0,40	-	0,57	-	0,65	-	0,82	-	1,15	-	1,46	-	1,61	-	1,61	ac	1,61	comp aring)
V _{R,k} for	0,90	0,24	-	0,40	-	0,57	-	0,65	-	0,82	-	1,27	-	1,61	-	1,77	-	1,84	-	1,84	Sari
×	1,00	0,24	-	0,40	-	0,57	-	0,67	-	0,82	-	1,38	-	1,77	-	1,92	-	2,07	-	2,07	g of
_	1,20	0,24	-	0,40	-	0,57	-	0,67	-	0,88	-	1,61	-	1,84	-	2,15	-	2,38	-	2,38	
	1,50	0,24	-	0,40	-	0,57	-	0,67	-	0,88	-	2,15	-	2,30	-	2,53	-	2,76	-	2,76	je je
	2,00	0,24	-	0,40	-	0,57	-	0,67	-	0,88	-	2,15	-	2,30	-	2,53	-	2,76	-	2,76	-
NR,II,k =		-		-		0,3	36	0,4	12	0,5	55	0,7	77	1,2	23	1,	77	2,	38	failure of component II	see chapter 4.2.2

Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.


The values indicated above, depending on the screw depth I_g , shall apply to $k_{mod} = 0.90$ and the timber strength class C24 (ρ_k = 350 kg / m³). For other values of k_{mod} and strength classes see chapter 4.2.2

Timber substructures (component II): predrilling the holes with Ø 4,80 mm is necessary.

Self-tapping screw	
JA3-6,5xL-E16 With hexagon head and seal washer ≥ Ø 16,0 mm	Annex 76

8.06.02-186/12 Z56764.13

Materials

Fastener: stainless steel (1.4301 / 1.4567) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

with vulcanised EPDM seal

Component I: aluminium alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: aluminium alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573 \text{ timber } - \text{EN } 14081$

Pre-drill diameter see table

Timber substructures

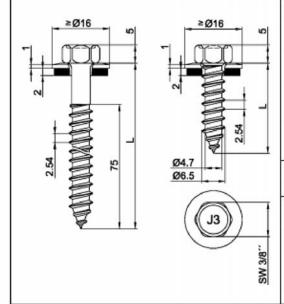
for timber substructures following performance were determined

 $M_{y,k} \\$ $= 9,742 \, \text{Nm}$

 $= 8,575 \text{ N/mm}^2$ for ≥ 32,5 mm $f_{ax,k}$ leff

t,	_{I,II} =	0,5	60	0,7	70	0,9	0	1,0	0	1,2	20	1,5	50	2,0	00	2,	50	3,	00		/
d	pd =		Ø	4,0							Ø	4,5						Ø	5,0	/	/ I
M _{t,}	nom =									_	-										
	0,50	0,31	-	0,53	-	0,74	-	0,85	-	1,06	-	1,20	ac	1,20	ac	1,20	abcd	1,20	abcd	1,20	_
	0,60	0,31	-	0,53	-	0,74	-	0,85	-	1,06	-	1,30	-	1,50	ac	1,50	ac	1,50	ac	1,50	ju
II	0,70	0,31	-	0,53	-	0,74	-	0,85	-	1,06	-	1,40	-	1,80	-	1,80	ac	1,80	ac	1,80	component aring)
<u>-</u>	0,80	0,31	-	0,53	-	0,74	-	0,85	-	1,06	-	1,50	-	1,90	-	2,10	-	2,10	ac	2,10	of comportion (bearing)
Ve,k for t _{N,I}	0,90	0,31	-	0,53	-	0,75	-	0,85	-	1,06	-	1,65	-	2,10	-	2,30	-	2,40	-	2,40	co
ll Ä	1,00	0,31	-	0,53	-	0,75	-	0,88	-	1,06	-	1,80	-	2,30	-	2,50	-	2,70	-	2,70	g of
_	1,20	0,31	-	0,53	-	0,75	-	0,88	-	1,15	-	2,10	-	2,40	-	2,80	-	3,10	-	3,10	ailure
	1,50	0,31	-	0,53	-	0,75	-	0,88	-	1,15	-	2,80	-	3,00	-	3,30	-	3,60	-	3,60	fail
	2,00	0,31	-	0,53	-	0,75	-	0,88	-	1,15	-	2,80	-	3,00	-	3,30	-	3,60	-	3,60	
NR,II,k =		-		-		0,4	17	0,5	55	0,7	'1	1,0	00	1,€	60	2,	30	3,	10	failure of component II	see chapter 4.2.2

Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.


The values indicated above, depending on the screw depth I_g , shall apply to $k_{mod} = 0.90$ and the timber strength class C24 (ρ_k = 350 kg / m³). For other values of k_{mod} and strength classes see chapter 4.2.2

Timber substructures (component II): predrilling the holes with Ø 4,80 mm is necessary.

Self-tapping screw	
JA3-6,5xL-E16 With hexagon head and seal washer ≥ Ø 16,0 mm	Annex 77

8.06.02-186/12 Z56764.13

Materials

Fastener: stainless steel (1.4301 7 1.4567) – EN 10088

Washer: stainless steel (1.4301) - EN 10088

with vulcanised EPDM seal

Component I: aluminium alloy

with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Component II: S235 - EN 10025-1

S280GD, S320GD - EN 10346

timber - EN 14081

Pre-drill diameter see table

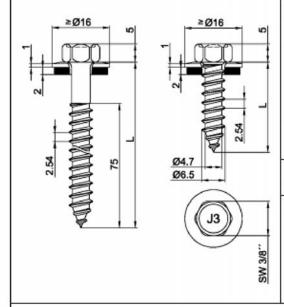
Timber substructures

for timber substructures following performance were determined

 $M_{y,k} = 9,742 \text{ Nm}$

 $f_{ax,k} = 8,575 \text{ N/mm}^2$ for $I_{eff} \ge 32,5 \text{ mm}$

t,	_{I,II} =	0,6	33	0,7	75	0,8	88	1,0	00	1,2	25	1,5	50	2,0	00	2,	,50	3	,00		
d	pd =	Øз	3,5	Ø4	١,0			Ø4	-,5			Ø 5	5,0			Ø	5,3			_	
	nom =									-	-										
	0,50	0,35	-	0,44	-	0,55	-	0,65	-	0,86	-	0,92	ac	0,92	ac	0,92	abcd	0,92	abcd	0,92	_
	0,60	0,35	-	0,44	-	0,55	-	0,65	-	0,86	-	1,00	-	1,15	ac	1,15	ac	1,15	ac	1,15	eut
II "	0,70	0,35	-	0,44	-	0,55	-	0,65	-	0,86	-	1,07	-	1,38	-	1,38	ac	1,38	ac	1,38	ξl
<u>:</u>	0,80	0,35	-	0,44	-	0,55	-	0,65	-	0,86	-	1,15	-	1,46	-	1,61	-	1,61	ac	1,61	of compon (bearing)
[] [j.	0,90	0,35	-	0,44	-	0,56	-	0,65	-	0,86	-	1,27	-	1,61	-	1,77	-	1,84	-	1,84	co
V _{R,k} for	1,00	0,35	-	0,44	-	0,56	-	0,67	-	0,86	-	1,38	-	1,77	-	1,92	-	2,07	-	2,07	رة و و
^	1,20	0,35	-	0,44	-	0,56	-	0,67	-	0,92	-	1,61	-	1,84	-	2,15	-	2,38	-	2,38	
	1,50	0,35	-	0,44	-	0,56	-	0,67	-	0,94	-	2,15	-	2,30	-	2,53	-	2,76	-	2,76	
	2,00	0,35	-	0,44	-	0,56	-	0,67	-	0,94	-	2,15	-	2,30	-	2,53	-	2,76	-	2,76	
N _{R,II,k} =		1,0	00	1,2	20	1,4	ŀ0	1,5	50	1,9	90	2,3	30	2,0	30	2,	30	2,	30	failure of component II	see chapter 4.2.2


Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

The values indicated above, depending on the screw depth I_g , shall apply to $k_{mod}=0.90$ and the timber strength class C24 ($\rho_k=350$ kg / m^3). For other values of k_{mod} and strength classes see chapter 4.2.2

Timber substructures (component II): predrilling the holes with Ø 4,80 mm is necessary.

Self-tapping screw	
JA3-6,5xL-E16 With hexagon head and seal washer ≥ Ø 16,0 mm	Annex 78

Materials

Fastener: stainless steel (1.4301 / 1.4567) – EN 10088

Washer: stainless steel (1.4301) - EN 10088

with vulcanised EPDM seal

Component I: aluminium alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: S235 - EN 10025-1

S280GD, S320GD - EN 10346

timber - EN 14081

Pre-drill diameter see table

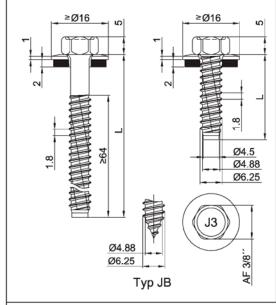
Timber substructures

for timber substructures following performance were determined

 $M_{y,k} = 9,742 \, Nm$

 $f_{ax,k} = 8,575 \text{ N/mm}^2$ for $I_{eff} \ge 32,5 \text{ mm}$

I -		0.0			7.5	0.0	00	1 4	20	1 47) <i>E</i>	1 47	-0	1 0	20		50	_	00		
T ₁	1,II =	0,6	3	0,7	5	0,8	88	1,0	00	1,2	25	1,5	00	2,0	JU	2,	,50	3,	00	ļ	
	pd =	Øз	,5	Ø4	·,0			Ø4	·,5			Ø5	5,0			Ø	5,3			_	
M _t	mon,									_	-										
	0,50	0,45	-	0,58	-	0,72	-	0,85	-	1,12	-	1,20	ac	1,20	ac	1,20	abcd	1,20	abcd	1,20	_
	0,60	0,45	-	0,58	-	0,72	-	0,85	-	1,12	-	1,30	-	1,50	ac	1,50	ac	1,50	ac	1,50	au
Ш "	0,70	0,45	-	0,58	-	0,72	-	0,85	-	1,12	-	1,40	-	1,80	-	1,80	ac	1,80	ac	1,80	component aring)
= = =	0,80	0,45	-	0,58	-	0,72	-	0,85	-	1,12	-	1,50	-	1,90	-	2,10	-	2,10	ac	2,10	m (gu
V _{R,k} for	0,90	0,45	-	0,58	-	0,72	-	0,85	-	1,12	-	1,65	-	2,10	-	2,30	-	2,40	-	2,40	col
×	1,00	0,45	-	0,58	-	0,72	-	0,88	-	1,12	-	1,80	-	2,30	-	2,50	-	2,70	-	2,70	g q
_	1,20	0,45	-	0,58	-	0,72	-	0,88	-	1,20	-	2,10	-	2,40	-	2,80	-	3,10	-	3,10	ailure
	1,50	0,45	-	0,58	-	0,72	-	0,88	-	1,23	-	2,80	-	3,00	-	3,30	-	3,60	-	3,60	fail
	2,00	0,45	-	0,58	-	0,72	-	0,88	-	1,23	-	2,80	-	3,00	-	3,30	-	3,60	-	3,60	_
N _{R,II,k} =		1,0	00	1,2	20	1,4	10	1,5	50	1,9	90	2,3	30	2,3	30	2,	30	2,	30	failure of component II	see chapter 4.2.2


Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

The values indicated above, depending on the screw depth I_g , shall apply to $k_{mod}=0.90$ and the timber strength class C24 ($\rho_k=350$ kg / m^3). For other values of k_{mod} and strength classes see chapter 4.2.2

Timber substructures (component II): predrilling the holes with Ø 4,80 mm is necessary.

Self-tapping screw	
JA3-6,5xL-E16 With hexagon head and seal washer ≥ Ø 16,0 mm	Annex 79

Materials

Fastener: stainless steel (1.4301) - EN 10088 Washer: stainless steel (1.4301) - EN 10088

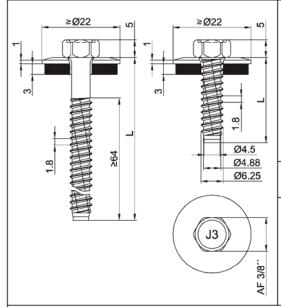
Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235, S275, S355 - EN 10025-1

S280GD, S320GD or S350GD - EN 10346

<u>Predrill diameter</u> see table below

Timber substructures


no performance determined

t	II, N	[mm]	1,2	25	1,5	50	2,	00	3,	00	4,	00	6,	00	≥ 7	',00	_	-
d	l _{pd}	[m m]		ø:	5,0				ø	5,3			ø:	5,5	ø	5,7	_	-
	M	t,nom							5 1	٧m							_	-
		0,50	_	_		_		_		_	_	_	_	_		_	_	_
		0,55	l —	_	—	_	—	_	—	_	l —	_	_	_	—	_	_	-
-	=	0,63	2,50	ac	2,70	ac	2,90	abcd	3,00	abcd	3,10	abcd	3,10	abcd	3,10	abcd	_	_
٤	Ē,	0,75	2,60	ac	3,10	ac	3,30	abcd	3,60	abcd	3,70	abcd	3,70	abcd	3,70	abcd	_	-
	Юг t _{N,} ı [ттт]	0,88	2,80	ac	3,20	ac	3,80	ac	4,10	abcd	4,30	abcd	4,40	abcd	4,40	abcd	_	-
غ ا	0	1,00	3,20	ac	3,60	ac	4,10	ac	4,80	ac	4,90	ac	5,10	ac	5,10	ac	_	-
5	Z	1,13	3,40	ac	4,00	ac	4,60	ac	5,40	ac	5,60	ac	5,80	ac	5,80	ac	_	_
2	VR,k [KIN]	1,25	3,60	ac	4,20	ac	5,00	ac	6,10	ac	6,30	ac	6,50	ac	6,50	ac	_	_
>	>	1,50	3,70	ac	4,40	ac	5,70	ac	6,80	ac	7,10	ac	7,30	ac	7,30	ac	_	-
		1,75	3,70	ac	4,70	ac	6,20	ac	7,60	ac	7,70	ac	8,10	ac	8,10	ac	_	_
		2,00	5,00	_	6,50	_	8,80	_	10,3	_	10,6	_	11,3	_	11,3	_	_	-
		0,50	0,97	ac	1,35	ac	1,51	abcd	_	_								
		0,55	1,23	ac	1,71	ac	1,91	abcd	_	-								
7	Ē	0,63	1,80	ac	2,50	ac	2,80	abcd	_	-								
٤	Ē,	0,75	2,00	ac	2,60	ac	3,10	abcd	3,60	abcd	3,60	abcd	3,60	abcd	3,60	abcd	_	-
	<u>Z</u>	0,88	2,00	ac	2,70	ac	3,30	ac	3,80	abcd	3,80	abcd	3,80	abcd	3,80	abcd	_	-
\$	0	1,00	2,00	ac	2,70	ac	3,40	ac	4,00	ac	4,00	ac	4,00	ac	4,00	ac	_	_
5	Z	1,13	2,00	ac	2,70	ac	3,60	ac	4,40	ac	4,40	ac	4,40	ac	4,40	ac	_	_
2	NR,k [KIN] TOT t _{N,I} [MM]	1,25	2,00	ac	2,70	ac	3,60	ac	4,80	ac	4,90	ac	4,90	ac	4,90	ac	_	_
Z	Z	1,50	2,00	ac	2,70	ac	3,60	ac	5,60	ac	5,90	ac	5,90	ac	5,90	ac	_	_
		1,75	2,00	ac	2,70	ac	3,60	ac	5,80	ac	6,90	ac	7,10	ac	7,10	ac	_	_
L		2,00	2,00	_	2,70	_	3,60	_	6,00	_	7,30	_	7,60	_	7,60	_	_	_

JZ3 - 6,3 x L for components II with $t_{II} \ge 1,25$ mm JB3 - 6,3 x L for components II with $t_{II} \le 2,00$ mm

Self tapping screw	
JZ3-6,3 x L JB3-6,3 x L with hexagon head and sealing washer ≥ Ø16 mm	Annex 80

Materials

Fastener: stainless steel (1.4301) - EN 10088 Washer: stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235, S275, S355 - EN 10025-1

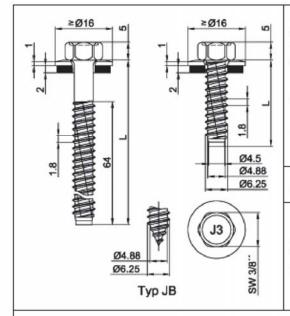
S280GD, S320GD or S350GD - EN 10346

<u>Predrill diameter</u> see table below

Timber substructures

no performance determined

T t	_{N,II} [m r	n1 T	1,5	50	2,0	00	3,0	00	4.	00	5.	00	6.	00	> 7	,00	_	_
	l _{pd} [m r		.,,			-	-,-		, ,	ø s				5,5		5,7	_	_
	M _{t,non}				_	_					,	5 N		,		,	_	_
	0,	50	_	_	_	_	_	_	_	_	_	_	_	_			_	_
	0,	55	_	_	_	_	_	_	_	_	_	_	—	_	_	_	_	_
-	<u> </u>	63	_	_	_	_	_	_	3,40	abcd	3,40	abcd	3,40	abcd	3,40	abcd	_	_
3	(i)	75	_	_	_	_	_	_	4,20	ac	4,20	ac	4,20	ac	4,20	ac	_	_
- []	<u> </u>	88	_	_	_	_	_	_	4,70	ac	4,70	ac	4,70	ac	4,70	ac	_	_
غ ا	5 1,	00	_	_	_	_	_	_	5,00	ac	5,00	ac	5,10	ac	5,10	ac	_	_
=	2 1,	13	_	_	_	_	_	_	5,60	ac	5,60	ac	5,80	ac	5,80	ac	_	_
2	<u>د</u> بخ 1,3	25	_	_	_	_	_	_	6,30	_	6,40	_	6,50	ac	6,50	ac	_	_
>	ž 1,	50	_	_	_	_	_	_	7,10	_	7,20	_	7,30	_	7,30	_	_	_
	1,	75	_	_	_	_	_	_	7,70	_	7,90	_	8,10	_	8,10	_	_	_
	2,	00	_	_	_	_	_	_	7,70	_	7,90	_	8,10	_	8,10	_	_	_
	0,	50	_	_	_	_	_	_	1,67	abcd	1,67	abcd	1,67	abcd	1,67	abcd	_	_
	0,	55	_	_	_	_	_	_	2,11	abcd	2,11	abcd	2,11	abcd	2,11	abcd	_	_
7	<u> </u>	63	_	_	_	_	_	_	3,10	abcd	3,10	abcd	3,10	abcd	3,10	abcd	_	_
<u> </u>	0,	75	_	_	_	_	_	_	4,00	ac	4,00	ac	4,00	ac	4,00	ac	_	_
	<u> </u>	88	_	_	_	_	_	_	4,40	ac	4,40	ac	4,40	ac	4,40	ac	_	_
غ ا	<u> </u>	00	_	_	_	_	_	_	4,60	ac	4,60	ac	4,60	ac	4,60	ac	_	_
2		13	_	_	_	_	_	_	5,10	ac	5,10	ac	5,10	ac	5,10	ac	l —	_
	<u>.</u> 1,	25	_	_	_	_	_	_	5,10	_	5,10	_	5,10	ac	5,10	ac	_	_
2	Ž 1,	50	_	_	_	_	_	_	5,90	_	5,90	_	5,90	_	5,90	_	_	_
	1,	75	_	_	_	_	_	_	6,90	_	6,90	_	7,10	_	7,10	_	_	_
L	2,	00	_	_	_	_	_	_	8,80	_	11,6	_	13,4	_	13,4	_	_	_


Self tapping screw

JZ3-6,3 x L

with hexagon head and sealing washer ≥ Ø22 mm

Annex 81

Materials

Fastener: stainless steel (1.4301) – EN 10088 Washer: stainless steel (1.4301) – EN 10088

with vulcanised EPDM seal

Component I: aluminium alloy

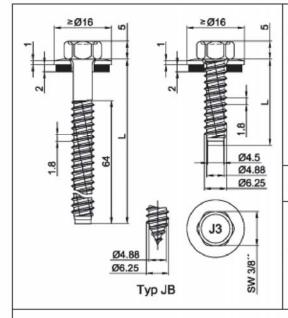
with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Component II: aluminium alloy

with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Pre-drill diameter see table

Timber substructures


for timber substructures no performance determined

	+ -	- 1	1,2	^	1,5	:0	2,0	0	1 2	50	2	00	1	00	5	00	6	00	. 7	,00
ı	t _{N,II} =	7.5	1,2	U	1,0	0	2,0		۷,	30	٥,	00	4,	00	٥,	00	0,	00	≥ 1	,00
	d _{pd} =	=				Ø	4,5				Ø	5,0			Ø	5,3			Ø	5,5
N	1 _{t,nom}	=									-	_								
	0	,50	0,79	-	0,84	ac	0,84	ac	0,84	abcd										
	0	,60	0,79	-	0,96	-	1,07	ac	1,07	ac	1,07	ac	1,07	abcd	1,07	abcd	1,07	abcd	1,07	abcd
"	0	,70	0,79	-	1,07	-	1,30	-	1,30	ac	1,30	ac	1,30	abcd	1,30	abcd	1,30	abcd	1,30	abcd
	0	,80	0,79	-	1,15	-	1,46	-	1,53	-	1,53	-	1,53	ac	1,53	abcd	1,53	abcd	1,53	abcd
Ve k for the	0	,90	0,79	-	1,27	-	1,53	-	1,73	-	1,77	-	1,77	ac	1,77	ac	1,77	abcd	1,77	abcd
ž	1	,00	0,80	-	1,38	-	1,61	-	1,92	-	2,00	-	2,00	ac	2,00	ac	2,00	abcd	2,00	abcd
	1	,20	0,87	-	1,61	-	1,84	-	2,07	-	2,30	-	2,38	ac	2,38	ac	2,38	abcd	2,38	abcd
	1	,50	0,87	-	2,15	-	2,30	-	2,53	-	2,69	-	3,07	ac	3,07	ac	3,07	ac	3,07	ac
	2	,00	0,87	-	2,15	-	2,30	-	2,53	-	2,69	-	3,07	-	3,07	-	3,07	-	3,33	-
II									Ī		Ī		_		_		_			
II Z			0,5	4	0,7	77	1,2	23	1,	77	2,	38	3,	68	5,	30	7,	06	7,	06
\parallel^{z}																				

Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

Self-tapping screw	
JZ3-6,3xL-E16 JB3-6,3xL-E16 With hexagon head and seal washer ≥ Ø 16,0 mm	Annex 82

Materials

Fastener: stainless steel (1.4301) - EN 10088 stainless steel (1.4301) - EN 10088 Washer:

with vulcanised EPDM seal

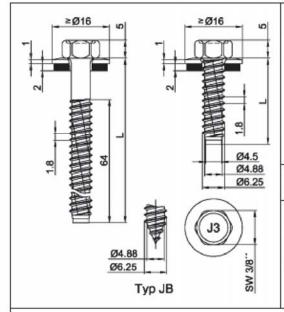
Component I: aluminium alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: aluminium alloy with R_{m,min} = 215 N/mm² – EN 573

Pre-drill diameter see table

Timber substructures


for timber substructures no performance determined

T t	, _{II} =	1,2	20	1,5	50	2,0	00	2.	50	3.	00	4.	00	5.	00	6.	00	> 7	,00
	pd =	.,_		.,,,		4,5				_	5.0			Ø					5,5
ı—	, _{nom} =					•					_				-,-				-,-
	0,50	1,03	-	1,10	ac	1,10	ac	1,10	abcd										
	0,60	1,03	-	1,25	ac	1,40	ac	1,40	ac	1,40	ac	1,40	abcd	1,40	abcd	1,40	abcd	1,40	abcd
	0,70	1,03	-	1,40	-	1,70	-	1,70	ac	1,70	ac	1,70	abcd	1,70	abcd	1,70	abcd	1,70	abcd
	0,80	1,03	-	1,50	-	1,90	-	2,00	-	2,00	-	2,00	ac	2,00	abcd	2,00	abcd	2,00	abcd
VR,k for t _{N,I}	0,90	1,03	-	1,65	-	2,00	-	2,25	-	2,30	-	2,30	ac	2,30	ac	2,30	abcd	2,30	abcd
, ž	1,00	1,04	-	1,80	-	2,10	-	2,50	-	2,60	-	2,60	ac	2,60	ac	2,60	abcd	2,60	abcd
_	1,20	1,14	-	2,10	-	2,40	-	2,70	-	3,00	-	3,10	ac	3,10	ac	3,10	abcd	3,10	abcd
	1,50	1,14	-	2,80	-	3,00	-	3,30	-	3,50	-	4,00	ac	4,00	ac	4,00	ac	4,00	ac
<u> </u>	2,00	1,14	-	2,80	-	3,00	-	3,30	-	3,50	-	4,00	-	4,00	-	4,00	-	4,33	-
N N,II, N		0,7		1,0	00	1,6	0	2,	30	3,	10	4,	80	6,	90	9,	20	9,	20

Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

Self-tapping screw	
JZ3-6,3xL-E16 JB3-6,3xL-E16 With hexagon head and seal washer ≥ Ø 16,0 mm	ex 83

Materials

Fastener: stainless steel (1.4301) – EN 10088 Washer: stainless steel (1.4301) – EN 10088

with vulcanised EPDM seal

Component I: aluminium alloy

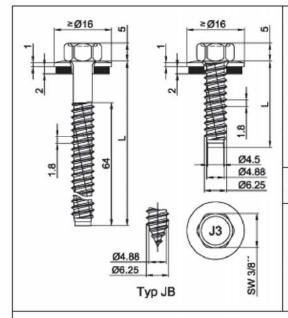
with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Component II: S235 - EN 10025-1

S280GD, S320GD - EN 10346

Pre-drill diameter see table

Timber substructures


for timber substructures no performance determined

+		1,2	5	1,5	50	2,0	0	2,	50	3	00	1	00	5	00	6	00	≥ 7,	00
4	N,II =	1,2	5	1,0	,,,	2,0		۷,	30	٥,	00	4,	00	٥,	00	0,	00		
	l _{pd} =		Ø	5,0						Ø	5,3					Ø:	5,5	Ø5	,7
M	t,nom =									-	_								
	0,50	0,83	-	0,84	ac	0,84	ac	0,84	abcd	0,84	-								
	0,60	0,83	-	0,96	-	1,07	ac	1,07	ac	1,07	ac	1,07	abcd	1,07	abcd	1,07	abcd	1,07	-
	0,70	0,83	-	1,07	-	1,30	-	1,30	ac	1,30	ac	1,30	abcd	1,30	abcd	1,30	abcd	1,30	-
	0,80	0,83	-	1,15	-	1,46	-	1,53	-	1,53	-	1,53	ac	1,53	abcd	1,53	abcd	1,53	-
V _{R,k} for t _{N,I}	0,90	0,83	-	1,27	-	1,53	-	1,73	-	1,77	-	1,77	ac	1,77	ac	1,77	abcd	1,77	-
, X.	1,00	0,83	-	1,38	-	1,61	-	1,92	-	2,00	-	2,00	ac	2,00	ac	2,00	abcd	2,00	-
_	1,20	0,90	-	1,61	-	1,84	-	2,07	-	2,30	-	2,38	ac	2,38	ac	2,38	abcd	2,38	-
	1,50	0,93	-	2,15	-	2,30	-	2,53	-	2,69	-	3,07	ac	3,07	ac	3,07	ac	3,07	-
	2,00	0,93	-	2,15	-	2,30	-	2,53	-	2,69	-	3,07	-	3,07	-	3,07	-	3,33	-
II	II ×																		
N N,II,R II		2,0	0	2,7	70	3,6	0	3,	60	6,	00	7,	30	7,	45	7,	60	7,6	0

Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

Self-tapping screw	
JZ3-6,3xL-E16 JB3-6,3xL-E16	Annex 84
With hexagon head and seal washer ≥ Ø 16,0 mm	

Materials

Fastener: stainless steel (1.4301) – EN 10088 Washer: stainless steel (1.4301) – EN 10088

with vulcanised EPDM seal

Component I: aluminium alloy

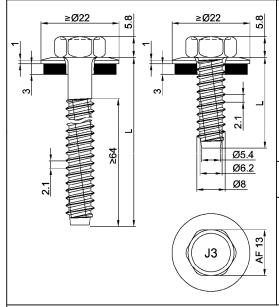
with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: S235 - EN 10025-1

S280GD, S320GD - EN 10346

Pre-drill diameter see table

Timber substructures


for timber substructures no performance determined

			_				_	_						_		_		_	
t	N,II =	1,2	25	1,5	0	2,0	0	2,	50	3,	00	4,	00	5,	00	6,	00	≥ 7,	00
	l _{pd} =		Ø	5,0						Ø	5,3					Ø	5,5	Ø5	,7
M	t,nom =									-	_								
	0,50	1,08	-	1,10	ac	1,10	ac	1,10	abcd	1,10	-								
	0,60	1,08	-	1,25	-	1,40	ac	1,40	ac	1,40	ac	1,40	abcd	1,40	abcd	1,40	abcd	1,40	-
	0,70	1,08	-	1,40	-	1,70	-	1,70	ac	1,70	ac	1,70	abcd	1,70	abcd	1,70	abcd	1,70	-
	0,80	1,08	-	1,50	-	1,90	-	2,00	-	2,00	-	2,00	ac	2,00	abcd	2,00	abcd	2,00	-
V _{R,k} for t _{N,I}	0,90	1,08	-	1,65	-	2,00	-	2,25	-	2,30	-	2,30	ac	2,30	ac	2,30	abcd	2,30	-
, X.	1,00	1,08	-	1,80	-	2,10	-	2,50	-	2,60	-	2,60	ac	2,60	ac	2,60	abcd	2,60	-
_	1,20	1,18	-	2,10	-	2,40	-	2,70	-	3,00	-	3,10	ac	3,10	ac	3,10	abcd	3,10	-
	1,50	1,21	-	2,80	-	3,00	-	3,30	-	3,50	-	4,00	ac	4,00	ac	4,00	ac	4,00	-
	2,00	1,21	-	2,80	-	3,00	-	3,30	-	3,50	-	4,00	-	4,00	-	4,00	-	4,33	-
N _{R,II,K}		2,0	10	2,7	"0	3,6	0	3	60	6	00	7	30	7	45	7	60	7,6	0.
ĽŽ		2,0			•	,,,	•	,		,		,		,,		,		7,0	

Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

Self-tapping screw	
JZ3-6,3xL-E16 JB3-6,3xL-E16	Annex 85
With hexagon head and seal washer ≥ Ø 16,0 mm	

Materials

Fastener: stainless steel (1.4301) - EN 10088 Washer: stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

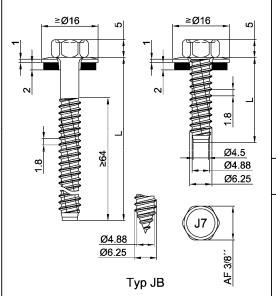
Component II: S235 - EN 10025-1

S280GD, S320GD or S350GD - EN 10346

<u>Predrill diameter</u> see table below

Timber substructures

no performance determined


t _N ,	[mm]	1,5	0	2,0	0	3,0	00	4,	00	6,	00	8,	00	≥ 1	0,0	_	- 1
d _p	_d [m m]				ø	3,8				ø	7,0	ø	7,2	ø	7,4	_	-
	M _{t,nom}							10	Nm							_	-
	0,50	-	_	I —	_	-	_	_	_	_	_	_	_	_	_	_	_
	0,55	—	_	—	_	—	_	—	_	_	_	_	_	_	_	_	-
│┲	0,63	3,80	ac	3,80	ac	3,80	ac	3,80	abcd	3,80	abcd	3,80	abcd	3,80	abcd	_	-
for t _{N,I} [mm]	0,75	4,70	ac	4,70	ac	4,70	ac	4,70	ac	4,70	abcd	4,70	abcd	4,70	abcd	_	-
Ţ.	0,88	5,30	_	5,30	ac	5,30	ac	5,30	ac	5,30	ac	5,30	ac	5,30	ac	_	-
ģ	1,00	5,90	_	5,90	_	5,90	_	5,90	ac	5,90	ac	5,90	ac	5,90	ac	_	-
		6,40	_	6,60	_	6,60	_	6,60	_	6,60	_	6,60	_	6,60	_	_	-
V _{R.k} [kN]	1,25	6,40	_	6,60	_	6,60	_	6,60	_	6,60	_	6,60	_	6,60	_	_	-
5	1,50	6,40	_	7,00	_	7,00	_	7,00	_	7,00	_	7,00	_	7,00	_	_	_
	1,75	6,40	_	7,00	_	7,00	_	7,00	_	7,00	_	7,00	_	7,00	_	_	-
	2,00	6,40	_	7,00	_	7,00	_	7,00	_	7,00	_	7,00	_	7,00	_	_	_
	0,50	1,19	ac	1,84	ac	2,38	ac	2,38	abcd	2,38	abcd	2,38	abcd	2,38	abcd	_	_
	0,55	1,50	ac	2,32	ac	3,00	ac	3,00	abcd	3,00	abcd	3,00	abcd	3,00	abcd	_	-
│┲	0,63	2,20	ac	3,40	ac	4,40	ac	4,40	abcd	4,40	abcd	4,40	abcd	4,40	abcd	_	-
for t _{N,I} [mm]	0,75	2,20	ac	3,40	ac	5,10	ac	5,30	ac	5,30	abcd	5,30	abcd	5,30	abcd	_	-
Ţ.	0,88	2,20	_	3,40	ac	5,40	ac	5,70	ac	5,70	ac	5,70	ac	5,70	ac	_	_
ģ	1,00	2,20	_	3,40	_	5,80	_	6,20	ac	6,20	ac	6,20	ac	6,20	ac	_	_
I _{R,k} [kN]	1,13	2,20	_	3,40	_	5,80	_	6,70	_	6,70	_	6,70	_	6,70	_	_	_
=	1,25	2,20	_	3,40	_	5,80	_	6,80	_	6,80	_	6,80	_	6,80	_	—	_
۱ź	1,50	2,20	_	3,40	_	5,80	_	6,80	_	6,80	_	6,80	_	6,80	_	_	_
	1,75	2,20	_	3,40	_	5,80	_	6,80	_	6,80	_	6,80	_	6,80	_	_	_
	2,00	2,20	_	3,40	_	5,80	_	6,80	_	6,80	_	6,80	_	6,80	_	_	_

Self tapping screw

JZ3-8,0 x L

with hexagon head and sealing washer ≥ Ø22 mm

Materials

Fastener: stainless steel CRONIMAKS®

similiar to stainless steel (1.4301) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235, S275 or S355 - EN 10025-1

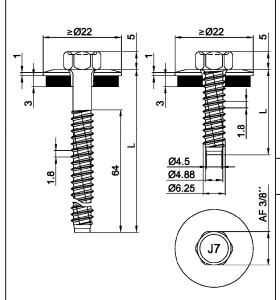
S280GD, S320GD or S350GD - EN 10346

<u>Predrill diameter</u> see table below

Timber substructures

no performance determined

Γ	t _{N,II}	[m m]	1,2	25	1,5	50	2,	00	3,	00	4,	00	6,	00	≥ 7	,00	_	_
	d_{pd}	[m m]		ø :	5,0				ø	5,3			ø	5,5	ø:	5,7	_	_
Г	M	t,nom							5 1	N m							_	_
		0,50	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
		0,55	_	_	l —	_	—	_	_	_	—	_	_	_	_	_	_	_
	ᆮ	0,63	2,50	ac	2,70	ac	2,80	abcd	3,00	abcd	3,10	abcd	3,10	abcd	3,10	abcd	_	_
	直	0,75	2,60	ac	3,10	ac	3,30	abcd	3,60	abcd	3,70	abcd	3,70	abcd	3,70	abcd	_	_
	for t _{N,I} [mm]	0,88	2,80	ac	3,20	ac	3,80	ac	4,10	abcd	4,30	abcd	4,40	abcd	4,40	abcd	_	_
	Гoг	1,00	3,20	ac	3,60	ac	4,10	ac	4,80	ac	4,90	ac	5,10	ac	5,10	ac	_	_
	Z	1,13	3,40	ac	4,00	ac	4,60	ac	5,40	ac	5,60	ac	5,80	ac	5,80	ac	_	_
	V _{R,k} [kN]	1,25	3,60	ac	4,20	ac	5,00	ac	6,10	ac	6,30	ac	6,50	ac	6,50	ac	_	_
	>	1,50	3,70	ac	4,40	ac	5,70	ac	6,80	ac	7,10	ac	7,30	ac	7,30	ac	_	_
		1,75	3,70	ac	4,70	ac	6,20	ac	7,60	ac	7,70	ac	8,10	ac	8,10	ac	_	_
		2,00	5,00	_	6,50	_	8,80	_	10,3	_	10,6	_	11,3	_	11,3	_	_	_
		0,50	0,97	ac	1,35	ac	1,51	abcd	1,51	abcd	1,51	abcd	1,51	abcd	1,51	abcd	_	_
		0,55	1,23	ac	1,71	ac	1,91	abcd	1,91	abcd	1,91	abcd	1,91	abcd	1,91	abcd	_	_
	=	0,63	1,80	ac	2,50	ac	2,80	abcd	2,80	abcd	2,80	abcd	2,80	abcd	2,80	abcd	_	_
	Ĕ	0,75	2,00	ac	2,70	ac	3,10	abcd	3,60	abcd	3,60	abcd	3,60	abcd	3,60	abcd	_	_
	for t _{N,I} [mm]	0,88	2,00	ac	2,70	ac	3,30	ac	3,80	abcd	3,80	abcd	3,80	abcd	3,80	abcd	_	_
	ρ	1,00	2,00	ac	2,70	ac	3,40	ac	4,00	ac	4,00	ac	4,00	ac	4,00	ac	_	_
	Ŝ	1,13	2,00	ac	2,70	ac	3,60	ac	4,40	ac	4,40	ac	4,40	ac	4,40	ac	_	_
	N _{X,K} [KN]	1,25	2,00	ac	2,70	ac	3,60	ac	4,80	ac	4,90	ac	4,90	ac	4,90	ac	_	_
	ž	1,50	2,00	ac	2,70	ac	3,60	ac	5,60	ac	5,90	ac	5,90	ac	5,90	ac	—	_
		1,75	2,00	ac	2,70	ac	3,60	ac	5,80	ac	6,90	ac	7,10	ac	7,10	ac	_	_
L		2,00	2,00	_	2,70		3,60	_	6,00	_	7,30	_	7,60	_	7,60	_	_	_


JZ7 - 6,3 x L for components II with $t_{II} \ge 1,25$ mm JB7 - 6,3 x L for components II with $t_{II} \le 2,00$ mm

Salf	tan	nina	screw
0011	ιaν	ullu	30101

JZ7-6,3 x L JB7-6,3 x L

with hexagon head and sealing washer $\geq \varnothing$ 16 mm

Materials

Fastener: stainless steel CRONIMAKS®

similiar to stainless steel (1.4301) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235, S275 or S355 - EN 10025-1

S280GD, S320GD or S350GD - EN 10346

<u>Predrill diameter</u> see table below

Timber substructures

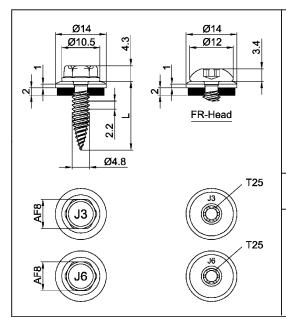
no performance determined

Г	t _{NI II}	[m m]	1.5	50	2,0	00	3,0	00	4.	00	5.	00	6.	00	> 7	,00	_	_
ŀ		[m m]	- ,				- '		- '		5,3			5,5		5,7	_	_
t		l _{t,nom}									<u> </u>	5 N		<u> </u>	<u> </u>	<u>, </u>	_	_
ı		0,50	_	_	l —	_	_	_	_	_	_	_	_	_	_	_	_	_
		0,55	_	_	 	_	_	_	_	_	l —	_	_	_	_	_	_	_
	_	0,63	_	_	_	_			3,40	abcd	3,40	abcd	3,40	abcd	3,40	abcd	_	_
	ᆵ	0,75	_	_	—	_	_	_	4,20	ac	4,20	ac	4,20	ac	4,20	ac	_	_
	V _{R,k} [kN] for t _{N,I} [mm]	0,88	_	_	—	_	_	_	4,70	ac	4,70	ac	4,70	ac	4,70	ac	_	_
	for	1,00	_	_	—	_	_	_	5,00	ac	5,00	ac	5,10	ac	5,10	ac	_	_
	Z	1,13	_	_	—	_	_	_	5,60	ac	5,60	ac	5,80	ac	5,80	ac	_	_
	* *	1,25	_	_	_	_	_	_	6,30	_	6,40	_	6,50	ac	6,50	ac	_	_
	>	1,50	_	_	—	_	_	_	7,10	_	7,20	_	7,30	_	7,30	_	_	_
		1,75	_	_	—	_	 	_	7,70	_	7,90	_	8,10	_	8,10	_	_	_
		2,00	_	_	—	_	_	_	7,70	_	7,90	_	8,10	_	8,10	_	_	_
ſ		0,50	_	_	_	_	_	_	1,67	abcd	1,67	abcd	1,67	abcd	1,67	abcd	_	_
		0,55	_	_	—	_	—	_	2,11	abcd	2,11	abcd	2,11	abcd	2,11	abcd	_	_
	ᆮ	0,63	_	_	—	_	_	_	3,10	abcd	3,10	abcd	3,10	abcd	3,10	abcd	_	_
	<u>Ē</u>	0,75	_	_	—	_	_	_	4,00	ac	4,00	ac	4,00	ac	4,00	ac	_	_
	ž	0,88	_	_	—	_	_	_	4,40	ac	4,40	ac	4,40	ac	4,40	ac	_	_
	for	1,00	_	_	—	_	_	_	4,60	ac	4,60	ac	4,60	ac	4,60	ac	_	_
	ŝ	1,13	_	_	—	_	_	_	5,10	ac	5,10	ac	5,10	ac	5,10	ac	_	_
	N _{R,k} [kN] for t _{N,I} [mm]	1,25	_	_	—	_	_	_	5,10	_	5,10	_	5,10	ac	5,10	ac	_	_
	ž	1,50	_	_	—	_	_	_	5,90	_	5,90	_	5,90	_	5,90	_	—	_
		1,75	_	_	—	_	_	_	6,90	_	6,90	_	7,10	_	7,10	_	_	_
		2,00	_	_	_	_	_	_	8,80	_	11,6	_	13,4	_	13,4	_	_	_

JZ7 - 6,3 x L for components II with $t_{II} \ge 1,25$ mm JB7 - 6,3 x L for components II with $t_{II} \le 2,00$ mm

Self	tapping	screw

JZ7-6,3 x L JB7-6,3 x L


with hexagon head and sealing washer \geq Ø22 mm

Annex 88

Page 102 of European technical approval ETA-10/0200 of 27 June 2013

English translation prepared by DIBt

Materials

Fastener: stainless steel (1.4301) - EN 10088

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) – EN 10088

Component I: S280GD, S320GD or S350GD – EN 10346 Component II: S280GD, S320GD or S350GD – EN 10346

Drilling capacity $\Sigma t_i \le 2,00 \text{ mm}$

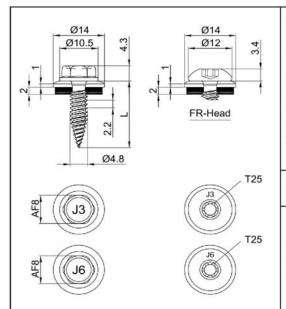
Timber substructures

for timber substructures no performance determined

t _{N,}	_{II} =	0,40	0,50	0,55	0,63	0,75	0,88	
M _{t,r}	om =			-	-			
	0,40	0,65	0,65	0,65	0,65	0,65	0,65	
	0,50	0,65	0,81	0,81	0,81	0,81	0,81	
	0,55	0,65	0,81	0,99	0,99	0,99	0,99	
11	0,63	0,65	0,81	0,99	1,26	1,26	1,26	
t, E, I	0,75	0,65	0,81	0,99	1,26	1,71	1,71	
V _{R,k} für t _{n,ı}	0,88	0,65	0,81	0,99	1,26	1,71	2,46	
/R,k	1,00	_	_	_	_	_	_	
	1,13	_	_	_	_	_	_	
	1,25	_	_	_	_	_	_	
	1,50	_	_	_	_	_	_	
	2,00	_	_	_	_	-	_	
	0,40	0,45	0,67	0,78	0,94	1,21	1,46	
	0,50	0,45	0,67	0,78	0,94	1,21	1,50	
	0,55	0,45	0,67	0,78	0,94	1,21	1,50	
п	0,63	0,45	0,67	0,78	0,94	1,21	1,50	
	0,75	0,45	0,67	0,78	0,94	1,21	1,50	
für	0,88	0,45	0,67	0,78	0,94	1,21	1,50	
N _{R,k} für t _{n,ı}	1,00	_	_	_	_	_	_	
	1,13	_	_	_	_	_	_	
	1,25	_	_	_	_	_	_	
	1,50	-	_	_	_	_	-	
	2,00	_	_	_	_	_	_	

If both components I and II are made of S320GD or S350GD all values may be increased by 8,3%.

Self tapping screw


JF3-2H-4,8 x L JF3-FR-2H-4,8 x L JF6-2H-4,8 x L

with hexagon head or round head with Torx® drive system and sealing washer $\geq \emptyset$ 14 mm

Page 103 of European technical approval ETA-10/0200 of 27 June 2013

English translation prepared by DIBt

Materials

Fastener: stainless steel (1.4301 / 1.4567) – EN 10088

stainless steel (1.4401 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

Component I: aluminium-Alloy

with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Component II: aluminium-Alloy

with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity $\Sigma t_i \le 2,00 \text{ mm}$

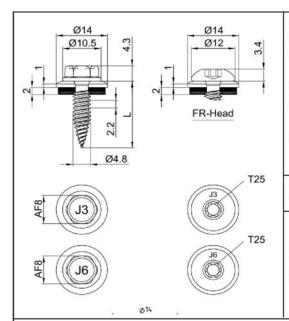
Timber substructures

for timber substructures no performance determined

t _N	,II =	0,5	0	0,6	0	0,7	'O	0,8	0	0,9	0	1,0	0
M _{t,r}	nom =						-	_					
	0,50	0,45	-	0,45	-	0,45	-	0,45	-	0,45	-	0,45	
<u>_</u>	0,60	0,45	-	0,66	-	0,66	-	0,66	-	0,66	-	0,66	-
_ ₹	0,70	0,45	-	0,66	-	0,88	-	0,88	-	0,88	-	0,88	-
VR,k for t _{N,I}	0,80	0,45	-	0,66	-	0,88	-	1,09	-	1,09	-	1,09	-
%	0,90	0,45	-	0,66	-	0,88	-	1,09	-	1,46	-	1,46	-
	1,00	0,45	-	0,66	-	0,88	-	1,09	-	1,46	-	1,83	-
N _{R,II,k} =		0,3	0,32 0,42		0,5	1	0,61		0,71		0,80		

Pull-trough resistance of component I according to EN 1999-1-4, section 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

self-tapping screw


JF3-2H-4,8xL JF6-2H-4,8xL JF3-FR-2H-4,8xL JF6-FR-2H-4,8xL

with hexagon head or FR head and seal washer $\geq \emptyset$ 14 mm

Page 104 of European technical approval ETA-10/0200 of 27 June 2013

English translation prepared by DIBt

Materials

Fastener: stainless steel (1.4301) – EN 10088 stainless steel (1.4404) – EN 10088

Washer: stainless steel (1.4301) - EN 10088

Component I: aluminium-Alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: aluminium-Alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity $\Sigma t_i \le 2,00 \text{ mm}$

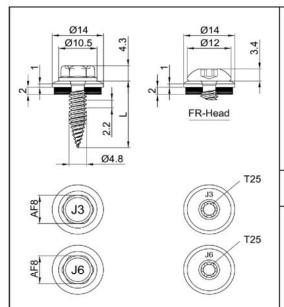
Timber substructures

for timber substructures no performance determined

t _N	, =	0,5	0	0,6	0	0,7	0	0,8	0	0,9	0	1,0	0
M _{t,r}	nom =						-	_					
	0,50	0,58	-	0,58	-	0,58	-	0,58	-	0,58	-	0,58	-
<u></u>	0,60	0,58	-	0,86	-	0,86	-	0,86	-	0,86	-	0,86	-
_ <u>₹</u>	0,70	0,58	-	0,86	-	1,14	-	1,14	-	1,14	-	1,14	-
VR,k for tn,ı	0,80	0,58	-	0,86	-	1,14	-	1,42	-	1,42	-	1,42	-
%	0,90	0,58	-	0,86	-	1,14	-	1,42	-	1,90	-	1,90	-
	1,00	0,58	-	0,86	-	1,14	-	1,42	-	1,90	-	2,38	-
NR,II,k =		0,4	0,42 0,54		0,6	0,67		0,79		0,92		4	

Pull-trough resistance of component I according to EN 1999-1-4, section 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

self-tapping screw


JF3-2H-4,8xL JF6-2H-4,8xL JF3-FR-2H-4,8xL JF6-FR-2H-4,8xL

with hexagon head or FR head and seal washer $\geq \emptyset$ 14 mm

Page 105 of European technical approval ETA-10/0200 of 27 June 2013

English translation prepared by DIBt

Materials

Fastener: stainless steel (1.4301 / 1.4567) – EN 10088

stainless steel (1.4401 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

Component I: aluminium-Alloy

with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Component II: S280GD, S320GD or S350GD - EN 10346

Drilling capacity $\Sigma t_i \le 2,00 \text{ mm}$

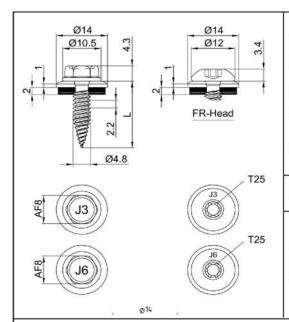
Timber substructures

for timber substructures no performance determined

t _N	, _{II} =	0,5	0	0,5	5	0,6	3	0,7	5	0,8	8	1,0	0
M _{t,r}	nom =						-	_					
	0,50	0,45	-	0,45	-	0,45	-	0,45	-	0,45	-	0,45	-
1	0,60	0,45	-	0,45	-	0,66	-	0,66	-	0,66	-	0,66	-
į	0,70	0,45	-	0,45	-	0,66	-	0,88	-	0,88	-	0,88	-
V _{R,k} for t	0,80	0,45	-	0,45	-	0,66	-	0,88	-	1,09	-	1,09	-
%	0,90	0,45	-	0,45	-	0,66	-	0,88	-	1,09	-	1,46	-
	1,00	0,45	-	0,45	-	0,66	-	0,88	-	1,09	-	1,83	-
N _{R,II,k} =		0,6	0,67 0,78			0,9	4	1,21		1,50		1,78	

Pull-trough resistance of component I according to EN 1999-1-4, section 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

self-tapping screw


JF3-2H-4,8xL JF6-2H-4,8xL JF3-FR-2H-4,8xL JF6-FR-2H-4,8xL

with hexagon head or FR head and seal washer $\geq \emptyset$ 14 mm

Page 106 of European technical approval ETA-10/0200 of 27 June 2013

English translation prepared by DIBt

Materials

Fastener: stainless steel (1.4301) - EN 10088

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

Component I: aluminium-Alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

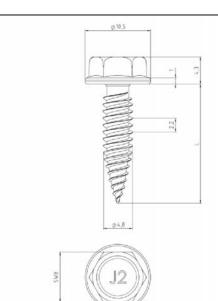
Component II: S280GD, S320GD or S350GD - EN 10346

Drilling capacity $\Sigma t_i \le 2,00 \text{ mm}$

Timber substructures

for timber substructures no performance determined

t _N	, _{II} =	0,5	0	0,6	0	0,7	0	0,8	0	0,9	0	1,0	0
M _{t,r}	nom =						-	_					
	0,50	0,58	-	0,58	-	0,58	-	0,58	-	0,58	-	0,58	-
1	0,60	0,58	-	0,58	-	0,86	-	0,86	-	0,86	-	0,86	-
1₹	0,70	0,58	-	0,58	-	0,86	-	1,14	-	1,14	-	1,14	-
Ve,k for to,	0,80	0,58	-	0,58	-	0,86	-	1,14	-	1,42	-	1,42	-
%	0,90	0,58	-	0,58	-	0,86	-	1,14	-	1,42	-	1,90	-
	1,00	0,58	-	0,58	-	0,86	-	1,14	-	1,42	-	2,38	-
N _{R,II,k} =		0,6	0,67 0,78		0,9	0,94		:1	1,50		1,78		


Pull-trough resistance of component I according to EN 1999-1-4, section 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

self-tapping screw

JF3-2H-4,8xL JF6-2H-4,8xL JF3-FR-2H-4,8xL JF6-FR-2H-4,8xL

with hexagon head or FR head and seal washer $\geq \emptyset$ 14 mm

Materials

Fastener: carbon steel

case hardened and galvanized

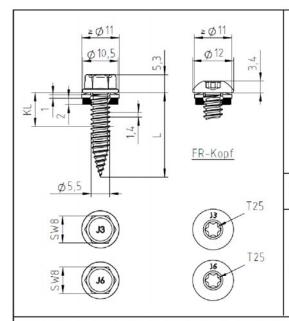
Washer: none

Component I: S280GD, S320GD or S350 GD – EN 10346 Component II: S280GD, S320GD or S350 GD – EN 10346

Drilling capacity $\Sigma t_i \le 2 \times 0.88 \text{ mm}$

Timber substructures

for timber substructures no performance determined


t _N	, _{II} =	0,40	0,50	0,55	0,63	0,75	0,88
	nom =			_			
	0,40	0,79	0,79	0,79	0,79	0,79	0,79
	0,50	0,79	1,18	1,27	1,42	1,65	1,65
	0,55	0,79	1,18	1,41	1,56	1,79	1,79
	0,63	0,79	1,18	1,41	1,77	2,00	2,00
11_	0,75	0,79	1,18	1,41	1,77	2,35	2,35
Ť,	0,88	0,79	1,18	1,41	1,77	2,35	2,84
V _{R,k} for t _{N,I} =	1,00	_	_	_	_	_	_
3	1,13	_	_	_	_	_	_
	1,25	_	_	_	_	_	_
	1,50	_	_	_	_	_	_
	1,75	_	_	_	_	_	_
	2,00	_	_	_	_	_	_
	0,40	0,52	0,71	0,82	0,92	0,92	0,92
	0,50	0,52	0,71	0,82	1,01	1,30	1,64
	0,55	0,52	0,71	0,82	1,01	1,30	1,64
	0,63	0,52	0,71	0,82	1,01	1,30	1,64
11	0,75	0,52	0,71	0,82	1,01	1,30	1,64
N _{R,k} for t _{N,I} =	0,88	0,52	0,71	0,82	1,01	1,30	1,64
15	1,00	_	_	_	_	_	_
ž	1,13	_	_	_	_	_	_
	1,25	_	_	_	_	_	-
	1,50	_	_	_	_	_	-
	1,75	_	-	_	_	_	-
	2,00	_	_	_	_		_

If component I and component II are made of S320GD or S350GD, the values may be increased by 8,3%.

self drilling screw

JF2-2H-4,8 x L with hexagon head

Materials

Fastener: stainless steel (1.4301 / 1.4567) – EN 10088

stainless steel (1.4401 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

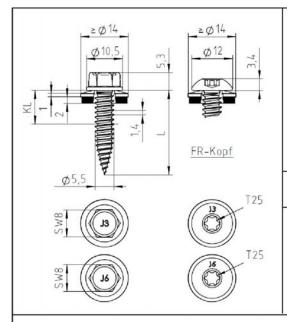
Component I: S280GD, S320GD or S350GD – EN 10346 Component II: S280GD, S320GD or S350GD – EN 10346

Drilling capacity $\Sigma t_i \le 2 \times 1,00 \text{ mm}$

Timber substructures

for timber substructures no performance determined

t _N	, _{II} =	0,4	10	0,5	50	0,5	55	0,6	63	0,7	75	3,0	38	1,0	00
M _{t,r}	nom =							-	-						
	0,40	0,88	_	0,88	_	0,88	_	0,88	_	0,88	-	0,88	_	0,88	_
	0,50	0,88	_	1,56	_	1,56	_	1,56	_	1,56	_	1,56	_	1,56	_
۱,	0,55	0,88	_	1,56	_	1,76	_	1,76	_	1,76	_	1,76	_	1,76	_
i ż	0,63	0,88	_	1,56	_	1,76	_	2,09	_	2,09	_	2,09	_	2,09	_
وا	0,75	0,88	_	1,56	_	1,76	_	2,09	_	2,57	_	2,57	_	2,57	_
V _{R,k} for	0,88	0,88	_	1,56	_	1,76	_	2,09	_	2,57	_	3,11	_	3,11	_
_	1,00	0,88	_	1,56	_	1,76	_	2,09	_	2,57	_	3,11	_	3,61	_
	1,13	_	_	—		_	_	—	_	—	_	—	_	 	_
	1,25	_	_	—	_	—	_	—	_	—	_	—	_	—	_
	0,40	0,60	_	0,82	_	0,94	_	1,00	_	1,00	_	1,00	_	1,00	_
	0,50	0,60	_	0,82	_	0,94	_	1,14	_	1,44	_	1,67	_	1,67	_
	0,55	0,60	_	0,82	_	0,94	_	1,14	_	1,44	_	1,80	_	1,87	_
	0,63	0,60	_	0,82	_	0,94	_	1,14	_	1,44	_	1,80	_	2,14	_
Į.	0,75	0,60	_	0,82	_	0,94	_	1,14	_	1,44	_	1,80	_	2,14	_
N _{R,k} for t _{N,I}	0,88	0,60	_	0,82	_	0,94	_	1,14	_	1,44	_	1,80	_	2,14	_
~	1,00	0,60	_	0,82	_	0,94	_	1,14	_	1,44	_	1,80	_	2,14	_
	1,13	_	_	—	_	—	_	—	_	—	_	—	_	—	_
	1,25	_	_	—	_	—	_	—	_	—	_	—	_	—	_


If both components I and II are made of S320GD or S350GD all values may be increased by 8,3%.

C^	Ιf	A١	vi I	ı.	~~	~	rew
ъe	ш	a	rII	H	าต	SC	:rew

JF3-2-5,5 x L JF6-2-5,5 x L JF3-FR-2-5,5 x L JF6-FR-2-5,5 x L

with hexagon head or round head with Torx®-drive and sealing washer $\geq \varnothing$ 11 mm

Materials

Fastener: stainless steel (1.4301 / 1.4567) – EN 10088

stainless steel (1.4401 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD – EN 10346 Component II: S280GD, S320GD or S350GD – EN 10346

Drilling capacity $\Sigma t_i \le 2 \times 1,00 \text{ mm}$

Timber substructures

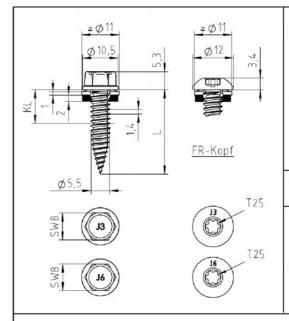
for timber substructures no performance determined

t _N	, _{II} =	0,4	10	0,5	50	0,5	55	0,6	63	0,7	75	0,8	38	1,0	00
M _{t,}	nom =					355		-	-	98				200	
	0,40	0,96	_	0,96	_	0,96	_	0,96	_	0,96	1-	0,96	_	0,96	_
Ĭ	0,50	0,96	_	1,56	_	1,56	_	1,56	_	1,56	_	1,56	_	1,56	- 1
	0,55	0,96	_	1,56	_	1,76	_	1,76	_	1,76	_	1,76	_	1,76	_
Ţ,	0,63	0,96	_	1,56	_	1,76	_	2,09	_	2,09	_	2,09	_	2,09	_
قِ ا	0,75	0,96	_	1,56	_	1,76	_	2,09	_	2,57	_	2,57	_	2,57	_
V _{R,k} for	0,88	0,96	_	1,56	_	1,76	_	2,09	_	2,57	_	3,11	_	3,11	_
_	1,00	0,96	_	1,56	_	1,76	_	2,09	_	2,57	_	3,11	_	3,61	_
	1,13	 	_	—	_	—	_	—	_	—	_	—	_	—	_
	1,25	_	_	_	_	_	_	—	_	_	_	—	_	—	_
	0,40	0,60	_	0,82	_	0,94	_	1,14	_	1,44	_	1,46	_	1,46	-
	0,50	0,60	_	0,82	_	0,94	_	1,14	_	1,44	_	1,76	_	1,76	_
	0,55	0,60	_	0,82	_	0,94	_	1,14	_	1,44	_	1,80	_	2,02	_
ż	0,63	0,60	_	0,82	_	0,94	_	1,14	_	1,44	_	1,80	_	2,14	_
ق ا	0,75	0,60	_	0,82	_	0,94	_	1,14	_	1,44	_	1,80	_	2,14	_
N X,R	0,88	0,60	_	0,82	_	0,94	_	1,14	_	1,44	_	1,80	_	2,14	_
~	1,00	0,60	_	0,82	_	0,94	_	1,14	_	1,44	_	1,80	_	2,14	_
	1,13	_	_	—	_	—	_	—	_	—	_	—	_	—	_
	1,25	_	_	—	_	—	_	—	_	—	_	—	_	—	_

If both components I and II are made of S320GD or S350GD all values may be increased by 8,3%.

SA	ıf	d٢	:11	ina	screw	,
ЭU		ur		ma	Screw	

JF3-2-5,5 x L JF6-2-5,5 x L


JF3-FR-2-5,5 x L JF6-FR-2-5,5 x L

with hexagon head or round head with Torx®-drive and sealing washer $\geq \varnothing$ 14 mm

Page 110 of European technical approval ETA-10/0200 of 27 June 2013

English translation prepared by DIBt

Materials

Fastener: stainless steel (1.4301 / 1.4567) – EN 10088

stainless steel (1.4401 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

Component I: aluminium-Alloy

with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Component II: aluminium-Alloy

with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity $\Sigma t_i \le 2 \times 1,50 \text{ mm}$

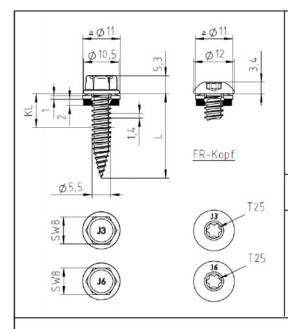
Timber substructures

for timber substructures no performance determined

_		T 0.40 T 0.50 T 0.0						_			1 400		1 400						
t _r	1,II =	0,4	10	0,5	50	0,6	60	0,7	70	0,8	30	0,9	90	1,0	00	1,2	20	1,5	50
M _t	nom =									_	-								
		0,43	_	0,43	_	0,43	_	0,43	_	0,43	_	0,43	_	0,43	_	0,43	_	0,43	-
	0,50	0,43	_	0,62	_	0,62	_	0,62	_	0,62	_	0,62	_	0,62	_	0,62	_	0,62	-
	0,60	0,43	_	0,62	_	0,71	_	0,71	_	0,71	_	0,71	_	0,71	_	0,71	_	0,71	- 1
	0,70	0,43	_	0,62	_	0,71	_	0,79	_	0,79	_	0,79	_	0,79	_	0,79	_	0,79	-
V _{R,k} for t _{N,I}	0,80	0,43	_	0,62	_	0,71	_	0,79	_	0,88	_	0,88	_	0,88	_	0,88	_	0,88	-
∏,¥,	0,90	0,43	_	0,62	_	0,71	_	0,79	_	0,88	_	1,04	_	1,04	_	1,04	_	1,04	-
^	1,00	0,43	_	0,62	_	0,71	_	0,79	_	0,88	_	1,04	_	1,19	_	1,19	_	1,19	-
	1,20	0,43	_	0,62	_	0,71	_	0,79	_	0,88	_	1,04	_	1,19	_	1,24	_	1,24	-
	1,50	0,43	_	0,62	_	0,71	_	0,79	_	0,88	_	1,04	_	1,19	_	1,24	_	1,87	_
ı ×																			
N _{R,II,k} =		0,24 0,35			0,45 0,58			0,69 0,		0,80		0,91		1,13		1,6	63		
~				l				1				l		l				l	

Pull-trough resistance of component I according to EN 1999-1-4, section 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

self drilling screw


JF3-2-5,5 x L JF6-2-5,5 x L JF3-FR-2-5,5 x L JF6-FR-2-5,5 x L

with hexagon head or round head with Torx®-drive and sealing washer $\geq \emptyset$ 11 mm

Page 111 of European technical approval ETA-10/0200 of 27 June 2013

English translation prepared by DIBt

Materials

Fastener: stainless steel (1.4301) – EN 10088

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

Component I: aluminium-Alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: aluminium-Alloy

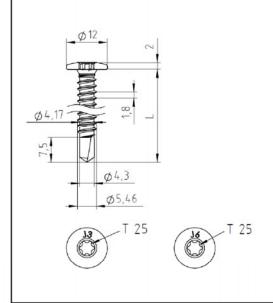
with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity $\Sigma t_i \le 2 \times 1,50 \text{ mm}$

Timber substructures

for timber substructures no performance determined

						T							-						
t _N	_{I,II} =	0,4	10	0,5	50	0,6	60	0,7	70	0,8	30	0,9	90	1,0	00	1,2	20	1,5	50
M _{t,}	nom =									-	-								
		0,55	_	0,55	_	0,55	_	0,55	_	0,55	_	0,55	_	0,55	_	0,55	_	0,55	-
	0,50	0,55	_	0,79	_	0,79	_	0,79	_	0,79	_	0,79	_	0,79	_	0,79	_	0,79	-
	0,60	0,55	_	0,79	_	0,91	_	0,91	_	0,91	_	0,91	_	0,91	_	0,91	_	0,91	-
, <u>r</u>	0,70	0,55	_	0,79	_	0,91	_	1,03	_	1,03	_	1,03	_	1,03	_	1,03	_	1,03	_
ort	0,80	0,55	_	0,79	_	0,91	_	1,03	_	1,15	_	1,15	_	1,15	_	1,15	_	1,15	-
V _{R,k} for	0,90	0,55	_	0,79	_	0,91	_	1,03	_	1,15	_	1,35	_	1,35	_	1,35	_	1,35	-
^	1,00	0,55	_	0,79	_	0,91	_	1,03	_	1,15	_	1,35	_	1,54	_	1,54	_	1,54	-
	1,20	0,55	_	0,79	_	0,91	_	1,03	_	1,15	_	1,35	_	1,54	_	1,62	_	1,62	-
	1,50	0,55	_	0,79	_	0,91	_	1,03	_	1,15	_	1,35	_	1,54	_	1,62	_	2,44	_
II																			
N _{R,II,k} =		0,31 0,46				0,6	60	0,7	0,75		0,89		1,04		1,18		1,47		2
z																			


Pull-trough resistance of component I according to EN 1999-1-4, section 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

self drilling screw

JF3-2-5,5 x L JF6-2-5,5 x L JF3-FR-2-5,5 x L JF6-FR-2-5,5 x L

with hexagon head or round head with Torx®-drive and sealing washer $\geq \emptyset$ 11 mm

Materials

Fastener: stainless steel (1.4301 / 1.4567) – EN 10088

stainless steel (1.4401 / 1.4578) - EN 10088

Washer: none

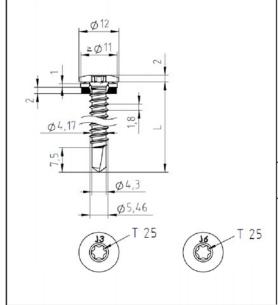
Component I: S280GD, S320GD or S350GD – EN 10346 Component II: S280GD, S320GD or S350GD – EN 10346

Drilling capacity $\Sigma t_i \leq 3,50 \text{ mm}$

Timber substructures

for timber substructures no performance determined

t _N	,II =	1,0	00	1,1	13	1,2	25	1,5	50	1,7	'5	2,0	0	2,5	50	3,0	00
$M_{t,i}$	nom =								-	-							
	0,50	1,21	_	1,30	_	1,39	_	1,57	_	1,57	_	1,57	_	1,57	_	1,57	_
	0,55	1,32	_	1,42	_	1,52	_	1,71	_	1,74	_	1,78	_	1,84	_	—	- 1
	0,63	1,51	_	1,62	_	1,72	_	1,94	_	2,02	_	2,11	_	2,28	_	—	- 1
	0,75	1,78	_	1,91	_	2,03	_	2,28	_	2,44	_	2,61	_	2,93	_	—	- 1
	0,88	2,08	_	2,23	_	2,36	_	2,65	_	2,90	_	3,14	_	3,63	_	—	_
V _{R,k} for t _{N,I}	1,00	2,35	_	2,52	_	2,67	_	3,00	_	3,32	_	3,64	_	4,29	_	—	_
/R,k	1,13	2,71	_	2,90	_	3,07	_	3,43	_	3,79	_	4,16	_	—	_	—	_
-	1,25	3,07	_	3,28	_	3,47	_	3,87	_	4,27	_	4,68	_	—	_	—	_
	1,50	3,78	_	4,03	_	4,26	_	4,74	_	5,22	_	5,70	_	—	_	—	_
	1,75	3,78	_	4,03	_	4,26	_	4,74	_	5,22	_	l —	_	—	_	—	_
	2,00	2,00	_	4,03	_	4,26	_	4,74	_	l —	_	l —	_	—	_	—	_
	0,50	1,10	_	1,10	_	1,50	_	1,59 ^{a)}	_	1,59 ^{a)}	_	1,59 ^{a)}	_	1,59 ^{a)}	_	1,59 ^{a)}	_
	0,55	1,10	_	1,10	_	1,50	_	1,82 ^{a)}	_	1,82 ^{a)}	_	1,82 ^{a)}	_	1,82 ^{a)}	_	—	_
	0,63	1,10	_	1,10	_	1,50		2,00	_	2,16 ^{a)}	_	2,16 ^{a)}	_	2,16 ^{a)}	_	_	_
	0,75	1,10	_	1,10	_	1,50	_	2,00	_	2,45	_	2,72 ^{a)}	_	2,72 ^{a)}	_	l —	_
	0,88	1,10	_	1,10	_	1,50	_	2,00	_	2,45	_	2,90	_	3,35	_	l —	_
ξ	1,00	1,10	_	1,10	_	1,50	_	2,00	_	2,45	_	2,90	_	3,40	_	l —	_
N _{R,k} for t _{N,I}	1,13	1,10	_	1,10	_	1,50	_	2,00	_	2,45	_	2,90	_		_		_
~	1,25	1,10	_	1,10	_	1,50		2,00	_	2,45	_	2,90	_	—	_	—	_
	1,50	1,10	_	1,10	_	1,50		2,00	_	2,45	_	2,90	_	_	_	_	_
	1,75	1,10	_	1,10	_	1,50	_	2,00	_	2,45	_	—	_	—	_	—	_
	2,00	1,10	_	1,10	_	1,50	_	2,00	_	—	_	—	_	—	_	—	_


If component I is made of S320GD or S350GD, the values marked with ^{a)} may be increased by 8,3%.

Calf	م منالا: برام	
Sell	drillina	Screw

JT3-LT-3-5,5 x L JT6-LT-3-5,5 x L

with pan head with Torx®-drive

Materials

Fastener: stainless steel (1.4301 / 1.4567) – EN 10088

stainless steel (1.4401 / 1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD – EN 10346 Component II: S280GD, S320GD or S350GD – EN 10346

Drilling capacity $\Sigma t_i \leq 3,50 \text{ mm}$

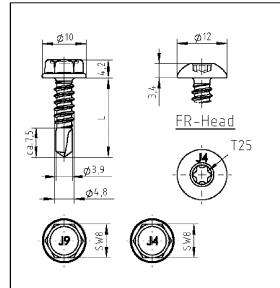
Timber substructures

for timber substructures no performance determined

t _N	,II =	1,0	0	1,1	3	1,2	25	1,5	50	1,7	'5	2,0	0	2,5	50	3,0	00
_	nom =								-								
	0,50	1,60	_	1,60	_	1,60	_	1,60	_	1,60	_	1,60	_	1,60	_	1,60	-
	0,55	1,68	_	1,69	_	1,71	_	1,82	_	1,84	_	1,86	_	1,89	_	—	-
	0,63	1,80	_	1,84	_	1,88	_	2,16	_	2,21	_	2,26	_	2,36	_	—	-
111	0,75	1,98	_	2,06	_	2,14	_	2,68	_	2,78	_	2,88	_	3,07	_	—	-
Ę,	0,88	2,17	_	2,30	_	2,42	_	3,24	_	3,39	_	3,54	_	3,83	_	l —	-
V _{R,k} for t _{N,I}	1,00	2,35	_	2,52	_	2,67	_	3,76	_	3,96	_	4,15	_	4,54	_	—	-
×	1,13	2,71	_	2,90	_	3,07		4,01	_	4,28	_	4,54	_	—	_	—	_
	1,25		_	3,28	_	3,47		4,25	_	4,59	_	4,93	_	_	_	_	-
	1,50	3,78	_	4,03	_	4,26	_	4,74	_	5,22	_	5,70	_	—	_	—	-
	1,75		_	4,03	_	4,26		4,74	_	5,22	_	_	_	—	_	—	-
	2,00	3,78	_	4,03	_	4,26	_	4,74	_	_	_	_	_	_	_	_	_
	0,50	0,86 ^{a)}	_	0,86 ^{a)}	_	0,86 ^{a)}	_	0,86 ^{a)}	_	0,86 ^{a)}	_	0,86 ^{a)}	_	0,86 ^{a)}	_	0,86 ^{a)}	-
	0,55	1,04	_	1,04	_	1,04 ^{a)}	_	1,04 ^{a)}	_	1,04 ^{a)}	_	1,04 ^{a)}	_	1,04 ^{a)}	_	—	-
	0,63	1,10		1,10	_	1,20 ^{a)}	_	1,20 ^{a)}	_	1,20 ^{a)}	_	1,20 ^{a)}	_	1,20 ^{a)}	_	—	_
۱.,	0,75	1,10	_	1,10	_	1,50	_	1,56 ^{a)}	_	1,56 ^{a)}	_	1,56 ^{a)}	_	1,56 ^{a)}	_	—	_
<u>=</u>	0,88	1,10	_	1,10	_	1,50	_	2,00	_	2,32 ^{a)}	_	2,32 ^{a)}	_	2,32 ^{a)}	_	—	_
وَ	1,00	1,10	_	1,10	_	1,50		2,00	_	2,32 ^{a)}	_	2,32 ^{a)}	_	2,32 ^{a)}	_	_	_
N _{R,k} for t _{N,I}	1,13	1,10	_	1,10	_	1,50	_	2,00	_	2,32 ^{a)}	_	2,32 ^{a)}	_	_	_	_	_
-	1,25	1,10	_	1,10	_	1,50	_	2,00	_	2,32 ^{a)}	_	2,32 ^{a)}	_	_	_	_	_
	1,50			1,10	_	1,50		2,00	_	2,32 ^{a)}		2,32 ^{a)}		_	_	_	_
	1,75			1,10	_	1,50		2,00	_	2,32 ^{a)}	_		_	_	_	_	_
	2,00	1,10	_	1,10	_	1,50	_	2,00	_		_		_		_	_	

If component I is made of S320GD or S350GD, the values marked with ^{a)} may be increased by 8,3%.

~		
Self	drillina	screw


JT3-LT-3-5,5 x L JT6-LT-3-5,5 x L

with pan head with Torx®-drive and sealing washer $\geq \emptyset$ 11 mm

Page 114 of European technical approval ETA-10/0200 of 27 June 2013

English translation prepared by DIBt

Materials

Fastener: JT4-4-4,8xL:

stainless steel (1.4301 / 14567) - EN 10088

JT9-4-4,8xL:

stainless steel (1.4401 / 1.4578) - EN 10088

Component I: aluminium alloy

with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Component II: aluminium alloy

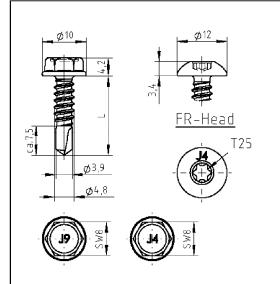
with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity $\Sigma t_i \le 4,50 \text{ mm}$

Timber substructures

for timber substructures no performance determined

t _N	, _{II} =	2,0	00	2,5	50	3,00		
M _{t,r}	nom =			_	-			
	0,50	0,67	ac	0,67	ac	0,67	ac	
	0,60	0,87	ac	0,87	ac	0,87	ac	
۱.,	0,70	1,06	ac	1,06	ac	1,06	ac	
Ę.	0,80	1,37	-	1,37	-	1,37	ac	
V _{R,k} for t _{N,I} =	0,90	1,67	-	1,67	-	1,67	а	
/R, K	1,00	1,98	-	1,98	-	1,98	а	
_	1,20	2,21	-	2,41	-	2,60	а	
	1,50	2,56	-	3,04	-	3,52	а	
	2,00	-	-	-	-	-	-	
N _{R,II,k} =		1,4	10	1,9	90	2,3	39	


Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

Self-drilling screw	
JT4-(FR-)4-4,8xL JT9-(FR-)4-4,8xL With hexagon head or FR-head	Annex 101

Page 115 of European technical approval ETA-10/0200 of 27 June 2013

English translation prepared by DIBt

Materials

Fastener: JT4-4-4,8xL:

stainless steel (1.4301 /1.4567) - EN 10088

JT9-4-4,8xL:

stainless steel (1.4401 / 1.4578) - EN 10088

Component I: aluminium alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: aluminium alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity $\Sigma t_i \le 4,50 \text{ mm}$

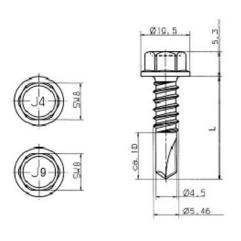
Timber substructures

for timber substructures no performance determined

t _N	, _{II} =	2,0	00	2,5	50	3,0	00
M _{t,r}	nom =			_	-		
	0,50	0,87	ac	0,87	ac	0,87	ac
	0,60	1,13	ac	1,13	ac	1,13	ac
۱.,	0,70	1,38	ac	1,38	ac	1,38	ac
V _{R,k} for t _{N,I} =	0,80	1,78	-	1,78	-	1,78	ac
ō	0,90	2,18	-	2,18	-	2,18	а
/R, K	1,00	2,58	-	2,58	-	2,58	а
_	1,20	2,88	-	3,14	-	3,39	а
	1,50	3,33	-	3,96	-	4,59	а
	2,00	-	-	-	-	-	-
N _{R,II,k} =		1,8	33	2,4	18	3,1	12

Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

Further particulars:


- Component I and II of aluminium with a tensile strength of R_m ≥ 245 N/mm²: For R_m ≥ 215 N/mm² the indicated values of the shear force resistance V_{R,k} can be increased by 14%.
- Component II of aluminium with a tensile strength of R_m ≥ 245 N/mm²: For R_m ≥ 215 N/mm² the indicated values of the pull-out resistance N_{R,II,k} can be increased by 14%.

Self-drilling screw	
JT4-(FR-)4-4,8xL JT9-(FR-)4-4,8xL With hexagon head or FR-head	Annex 102

Page 116 of European technical approval ETA-10/0200 of 27 June 2013

English translation prepared by DIBt

Materials

Fastener: JT4-6-5,5xL

stainless steel (1.4301 / 1.4567) - EN 10088

JT9-6-5,5xL

stainless steel (1.4401 /1.4578) - EN 10088

Component I: aluminium alloy

with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Component II: aluminium alloy

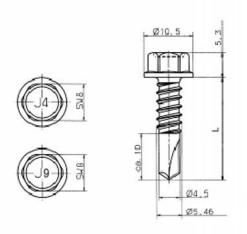
with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity $\Sigma t_i \le 6,50 \text{ mm}$

Timber substructures

for timber substructures no performance determined

t _N	_{I,II} =	2,0	00	2,5	50	3,0	0	4,0	0	5,0	00
M _{t,i}	nom =					_	_				
	0,50	0,71	ac								
	0,60	0,94	ac								
п	0,70	1,17	ac								
	0,80	1,40	-	1,40	-	1,40	ac	1,40	ac	1,40	а
V _{R,k} for t _{N,I}	0,90	1,62	-	1,62	-	1,62	ac	1,62	ac	1,62	а
/R,k	1,00	1,84	-	1,84	-	1,84	ac	1,84	ac	1,84	а
_	1,20	2,16	-	2,21	-	2,26	-	2,35	-	2,44	а
	1,50	2,65	-	2,76	-	2,88	-	3,11	-	3,34	а
	2,00	2,65	-	2,76	-	2,88	-	3,11	-	-	-
N _{R,II,k} =		1,3	36	1,7	77	2,1	6	3,4	13	4,7	70


Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

Self-drilling screw	
JT4-6-5,5xL JT9-6-5,5xL With hexagon head	Annex 103

Page 117 of European technical approval ETA-10/0200 of 27 June 2013

English translation prepared by DIBt

Materials

Fastener: JT4-6-5,5xL

stainless steel (1.4301 / 1.4567) - EN 10088

JT9-6-5,5xL

stainless steel (1.4401 / 1.4578) - EN 10088

Component I: aluminium alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: aluminium alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity $\Sigma t_i \le 6,50 \text{ mm}$

Timber substructures

for timber substructures no performance determined

t _{N,II} =		2,00		2,50		3,00		4,00		5,00	
$M_{t,nom} =$		_									
	0,50	0,93	ac	0,93	ac	0,93	ac	0,93	ac	0,93	ac
	0,60	1,23	ac	1,23	ac	1,23	ac	1,23	ac	1,23	ac
	0,70	1,53	ac	1,53	ac	1,53	ac	1,53	ac	1,53	ac
Ţ.	0,80	1,82	-	1,82	-	1,82	ac	1,82	ac	1,82	а
V _{R,k} for	0,90	2,11	-	2,11	-	2,11	ac	2,11	ac	2,11	а
, x,	1,00	2,40	-	2,40	-	2,40	ac	2,40	ac	2,40	а
_	1,20	2,82	-	2,88	-	2,94	-	3,06	-	3,18	а
	1,50	3,45	-	3,60	-	3,75	-	4,05	-	4,35	а
	2,00	3,45	-	3,60	-	3,75	-	4,05	-	-	-
N _{B,II,k} =		1,7	77	2,3	30	2,8	32	4,4	1 7	6,1	2

Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

Further particulars:

- Component I and II of aluminium with a tensile strength of $R_m \ge 245 \text{ N/mm}^2$: For $R_m \ge 215 \text{ N/mm}^2$ the indicated values of the shear force resistance $V_{R,k}$ can be increased by 14%.
- Component II of aluminium with a tensile strength of R_m ≥ 245 N/mm²: For R_m ≥ 215 N/mm² the indicated values of the pull-out resistance N_{R,II,k} can be increased by 14%.

Self-drilling screw				
JT4-6-5,5xL JT9-6-5,5xL With hexagon head	Annex 104			